Suppr超能文献

用于快速脉冲神经网络的可训练量化

Trainable quantization for Speedy Spiking Neural Networks.

作者信息

Castagnetti Andrea, Pegatoquet Alain, Miramond Benoît

机构信息

LEAT, Université Côte d'Azur, CNRS, Sophia Antipolis, France.

出版信息

Front Neurosci. 2023 Mar 3;17:1154241. doi: 10.3389/fnins.2023.1154241. eCollection 2023.

Abstract

Spiking neural networks are considered as the third generation of Artificial Neural Networks. SNNs perform computation using neurons and synapses that communicate using binary and asynchronous signals known as spikes. They have attracted significant research interest over the last years since their computing paradigm allows theoretically sparse and low-power operations. This hypothetical gain, used from the beginning of the neuromorphic research, was however limited by three main factors: the absence of an efficient learning rule competing with the one of classical deep learning, the lack of mature learning framework, and an important data processing latency finally generating energy overhead. While the first two limitations have recently been addressed in the literature, the major problem of latency is not solved yet. Indeed, information is not exchanged instantaneously between spiking neurons but gradually builds up over time as spikes are generated and propagated through the network. This paper focuses on quantization error, one of the main consequence of the SNN discrete representation of information. We argue that the quantization error is the main source of accuracy drop between ANN and SNN. In this article we propose an in-depth characterization of SNN quantization noise. We then propose a end-to-end direct learning approach based on a new trainable spiking neural model. This model allows adapting the threshold of neurons during training and implements efficient quantization strategies. This novel approach better explains the global behavior of SNNs and minimizes the quantization noise during training. The resulting SNN can be trained over a limited amount of timesteps, reducing latency, while beating state of the art accuracy and preserving high sparsity on the main datasets considered in the neuromorphic community.

摘要

脉冲神经网络被视为第三代人工神经网络。脉冲神经网络使用神经元和突触进行计算,这些神经元和突触通过称为脉冲的二进制和异步信号进行通信。自其计算范式理论上允许稀疏和低功耗操作以来,在过去几年中它们引起了广泛的研究兴趣。然而,从神经形态研究开始就使用的这种假设性优势受到三个主要因素的限制:缺乏与经典深度学习相竞争的有效学习规则、缺乏成熟的学习框架以及最终产生能量开销的重要数据处理延迟。虽然前两个限制最近在文献中得到了解决,但延迟的主要问题尚未解决。事实上,脉冲神经元之间的信息不是瞬间交换的,而是随着脉冲的产生和在网络中的传播随着时间逐渐积累的。本文关注量化误差,这是脉冲神经网络信息离散表示的主要后果之一。我们认为量化误差是人工神经网络和脉冲神经网络之间精度下降的主要来源。在本文中,我们对脉冲神经网络量化噪声进行了深入表征。然后,我们基于一种新的可训练脉冲神经模型提出了一种端到端的直接学习方法。该模型允许在训练期间调整神经元的阈值,并实现有效的量化策略。这种新颖的方法更好地解释了脉冲神经网络的全局行为,并在训练期间最小化量化噪声。由此产生的脉冲神经网络可以在有限数量的时间步上进行训练,减少延迟,同时在神经形态社区考虑的主要数据集上击败当前的精度并保持高稀疏性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd57/10020579/1f03117639fc/fnins-17-1154241-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验