Suppr超能文献

基于反向传播的深度学习尖峰神经网络学习技术综述。

Backpropagation-Based Learning Techniques for Deep Spiking Neural Networks: A Survey.

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Sep;35(9):11906-11921. doi: 10.1109/TNNLS.2023.3263008. Epub 2024 Sep 3.

Abstract

With the adoption of smart systems, artificial neural networks (ANNs) have become ubiquitous. Conventional ANN implementations have high energy consumption, limiting their use in embedded and mobile applications. Spiking neural networks (SNNs) mimic the dynamics of biological neural networks by distributing information over time through binary spikes. Neuromorphic hardware has emerged to leverage the characteristics of SNNs, such as asynchronous processing and high activation sparsity. Therefore, SNNs have recently gained interest in the machine learning community as a brain-inspired alternative to ANNs for low-power applications. However, the discrete representation of the information makes the training of SNNs by backpropagation-based techniques challenging. In this survey, we review training strategies for deep SNNs targeting deep learning applications such as image processing. We start with methods based on the conversion from an ANN to an SNN and compare these with backpropagation-based techniques. We propose a new taxonomy of spiking backpropagation algorithms into three categories, namely, spatial, spatiotemporal, and single-spike approaches. In addition, we analyze different strategies to improve accuracy, latency, and sparsity, such as regularization methods, training hybridization, and tuning of the parameters specific to the SNN neuron model. We highlight the impact of input encoding, network architecture, and training strategy on the accuracy-latency tradeoff. Finally, in light of the remaining challenges for accurate and efficient SNN solutions, we emphasize the importance of joint hardware-software codevelopment.

摘要

随着智能系统的采用,人工神经网络 (ANN) 已经变得无处不在。传统的 ANN 实现具有高能耗,限制了它们在嵌入式和移动应用中的使用。尖峰神经网络 (SNN) 通过二进制尖峰在时间上分布信息来模拟生物神经网络的动态。神经形态硬件的出现利用了 SNN 的特性,例如异步处理和高激活稀疏性。因此,SNN 最近作为一种替代传统 ANN 的脑启发式方法,在机器学习社区中引起了人们对低功耗应用的兴趣。然而,信息的离散表示使得基于反向传播的技术对 SNN 的训练具有挑战性。在本调查中,我们回顾了针对图像处理等深度学习应用的深度 SNN 的训练策略。我们从将 ANN 转换为 SNN 的方法开始,并将这些方法与基于反向传播的技术进行比较。我们提出了一种新的尖峰反向传播算法分类法,分为空间、时空和单尖峰方法三类。此外,我们分析了不同的策略来提高准确性、延迟和稀疏性,例如正则化方法、训练混合和 SNN 神经元模型特定参数的调整。我们强调了输入编码、网络架构和训练策略对准确性-延迟权衡的影响。最后,鉴于准确和高效的 SNN 解决方案的剩余挑战,我们强调了联合硬件和软件协同开发的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验