Sun Yanqing, Heng Fei, Lee Unkyung, Gilbert Peter B
University of North Carolina at Charlotte, Charlotte, NC 28223, U.S.A.
University of North Florida, Jacksonville, FL 32224, U.S.A.
Can J Stat. 2023 Mar;51(1):235-257. doi: 10.1002/cjs.11693. Epub 2022 Feb 24.
This article studies generalized semiparametric regression models for conditional cumulative incidence functions with competing risks data when covariates are missing by sampling design or happenstance. A doubly-robust augmented inverse probability weighted complete-case (AIPW) approach to estimation and inference is investigated. This approach modifies IPW complete-case estimating equations by exploiting the key features in the relationship between the missing covariates and the phase-one data to improve efficiency. An iterative numerical procedure is derived to solve the nonlinear estimating equations. The asymptotic properties of the proposed estimators are established. A simulation study examining the finite-sample performances of the proposed estimators shows that the AIPW estimators are more efficient than the IPW estimators. The developed method is applied to the RV144 HIV-1 vaccine efficacy trial to investigate vaccine-induced IgG binding antibodies to HIV-1 as correlates of acquisition of HIV-1 infection while taking account of whether the HIV-1 sequences are near or far from the HIV-1 sequences represented in the vaccine construct.
本文研究了在协变量因抽样设计或偶然因素而缺失的情况下,具有竞争风险数据的条件累积发病率函数的广义半参数回归模型。研究了一种用于估计和推断的双重稳健增强逆概率加权完全病例(AIPW)方法。该方法通过利用缺失协变量与第一阶段数据之间关系的关键特征来修改IPW完全病例估计方程,以提高效率。推导了一种迭代数值程序来求解非线性估计方程。建立了所提出估计量的渐近性质。一项检验所提出估计量有限样本性能的模拟研究表明,AIPW估计量比IPW估计量更有效。所开发的方法应用于RV144 HIV-1疫苗疗效试验,以研究疫苗诱导的针对HIV-1的IgG结合抗体作为获得HIV-1感染的相关因素,同时考虑HIV-1序列与疫苗构建体中所代表的HIV-1序列是接近还是远离。