Massy Ziad A, Lambert Oriane, Metzger Marie, Sedki Mohammed, Chaubet Adeline, Breuil Benjamin, Jaafar Acil, Tack Ivan, Nguyen-Khoa Thao, Alves Melinda, Siwy Justyna, Mischak Harald, Verbeke Francis, Glorieux Griet, Herpe Yves-Edouard, Schanstra Joost P, Stengel Bénédicte, Klein Julie
Centre for Research in Epidemiology and Population Health, University Paris-Saclay, University Versailles-Saint Quentin, Inserm UMRS 1018, Clinical Epidemiology Team, Villejuif, France.
Department of Nephrology, CHU Ambroise Paré, APHP, Boulogne Billancourt Cedex, France.
Kidney Int Rep. 2022 Dec 12;8(3):544-555. doi: 10.1016/j.ekir.2022.11.023. eCollection 2023 Mar.
The identification of patients with chronic kidney disease (CKD) at risk of progressing to kidney failure (KF) is important for clinical decision-making. In this study we assesed whether urinary peptidome (UP) analysis may help classify patients with CKD and improve KF risk prediction.
The UP was analyzed using capillary electrophoresis coupled to mass spectrometry in a case-cohort sample of 1000 patients with CKD stage G3 to G5 from the French CKD-Renal Epidemiology and Information Network (REIN) cohort. We used unsupervised and supervised machine learning to classify patients into homogenous UP clusters and to predict 3-year KF risk with UP, respectively. The predictive performance of UP was compared with the KF risk equation (KFRE), and evaluated in an external cohort of 326 patients.
More than 1000 peptides classified patients into 3 clusters with different CKD severities and etiologies at baseline. Peptides with the highest discriminative power for clustering were fragments of proteins involved in inflammation and fibrosis, highlighting those derived from α-1-antitrypsin, a major acute phase protein with anti-inflammatory and antiapoptotic properties, as the most significant. We then identified a set of 90 urinary peptides that predicted KF with a c-index of 0.83 (95% confidence interval [CI]: 0.81-0.85) in the case-cohort and 0.89 (0.83-0.94) in the external cohort, which were close to that estimated with the KFRE (0.85 [0.83-0.87]). Combination of UP with KFRE variables did not further improve prediction.
This study shows the potential of UP analysis to uncover new pathophysiological CKD progression pathways and to predict KF risk with a performance equal to that of the KFRE.
识别有进展为肾衰竭(KF)风险的慢性肾脏病(CKD)患者对于临床决策很重要。在本研究中,我们评估了尿肽组(UP)分析是否有助于对CKD患者进行分类并改善KF风险预测。
在来自法国CKD-肾脏流行病学和信息网络(REIN)队列的1000例G3至G5期CKD患者的病例队列样本中,使用毛细管电泳结合质谱法分析UP。我们分别使用无监督和有监督机器学习将患者分类为同质的UP簇,并使用UP预测3年KF风险。将UP的预测性能与KF风险方程(KFRE)进行比较,并在326例患者的外部队列中进行评估。
超过1000种肽在基线时将患者分为3个具有不同CKD严重程度和病因的簇。对聚类具有最高判别力的肽是参与炎症和纤维化的蛋白质片段,其中源自α-1-抗胰蛋白酶的肽最为显著,α-1-抗胰蛋白酶是一种具有抗炎和抗凋亡特性的主要急性期蛋白。然后,我们鉴定出一组90种尿肽,在病例队列中预测KF的c指数为0.83(95%置信区间[CI]:0.81-0.85),在外部队列中为0.89(0.83-0.94),这与KFRE估计值(0.85[0.83-0.87])相近。UP与KFRE变量的组合并未进一步改善预测。
本研究显示了UP分析在揭示新的CKD进展病理生理途径以及预测KF风险方面的潜力,其性能与KFRE相当。