Suppr超能文献

通过机器学习分类研究心灵冥想对长期、短期和非冥想者大脑前额叶皮质活动的影响:一项横断面研究

Effect of Heartfulness Meditation Among Long-Term, Short-Term and Non-meditators on Prefrontal Cortex Activity of Brain Using Machine Learning Classification: A Cross-Sectional Study.

作者信息

Shrivastava Anurag, Singh Bikesh K, Krishna Dwivedi, Krishna Prasanna, Singh Deepeshwar

机构信息

Biomedical Engineering, National Institute of Technology, Raipur, Raipur, IND.

Yoga Life Sciences, Swami Vivekananda Yoga Anusandhana Samsthana (S-VYASA), Bengluru, IND.

出版信息

Cureus. 2023 Feb 14;15(2):e34977. doi: 10.7759/cureus.34977. eCollection 2023 Feb.

Abstract

Background Meditation is a mental practice with health benefits and may increase activity in the prefrontal cortex of the brain. Heartfulness meditation (HM) is a modified form of rajyoga meditation supported by a unique feature called "yogic transmission." This feasibility study aimed to explore the effect of HM on electroencephalogram (EEG) connectivity parameters of long-term meditators (LTM), short-term meditators (STM), and non-meditators (NM) with an application of machine learning models and determining classifier methods that can effectively discriminate between the groups. Materials and methods EEG data were collected from 34 participants. The functional connectivity parameters, correlation coefficient, clustering coefficient, shortest path, and phase locking value were utilized as a feature vector for classification. To evaluate the various states of HM practice, the categorization was done between (LTM, NM) and (STM, NM) using a multitude of machine learning classifiers. Results The classifier's performances were evaluated based on accuracy using 10-fold cross-validation. The results showed that the accuracy of machine learning models ranges from 84% to 100% while classifying LTM and NM, and accuracy from 80% to 93% while classifying STM and NM. It was found that decision trees, support vector machines, k-nearest neighbors, and ensemble classifiers performed better than linear discriminant analysis and logistic regression. Conclusion This is the first study to our knowledge employing machine learning for the classification among HM meditators and NM The results indicated that machine learning classifiers with EEG functional connectivity as a feature vector could be a viable marker for accessing meditation ability.

摘要

背景 冥想是一种对健康有益的心理练习,可能会增加大脑前额叶皮质的活动。心灵冥想(HM)是一种改良形式的王瑜伽冥想,其具有一种名为“瑜伽传导”的独特特征。这项可行性研究旨在通过应用机器学习模型并确定能够有效区分不同组别的分类方法,探索HM对长期冥想者(LTM)、短期冥想者(STM)和非冥想者(NM)脑电图(EEG)连接参数的影响。材料与方法 从34名参与者收集EEG数据。功能连接参数、相关系数、聚类系数、最短路径和锁相值被用作分类的特征向量。为了评估HM练习的不同状态,使用多种机器学习分类器在(LTM,NM)和(STM,NM)之间进行分类。结果 使用10折交叉验证基于准确率评估分类器的性能。结果表明,在对LTM和NM进行分类时,机器学习模型的准确率范围为84%至100%,在对STM和NM进行分类时,准确率范围为80%至93%。发现决策树、支持向量机、k近邻和集成分类器的表现优于线性判别分析和逻辑回归。结论 据我们所知,这是第一项使用机器学习对HM冥想者和NM进行分类的研究。结果表明,以EEG功能连接作为特征向量的机器学习分类器可能是评估冥想能力的可行标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d9e/10019753/66364d3b294f/cureus-0015-00000034977-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验