Acuña Vicenç, Celic Mira, Corominas Lluís, Gernjak Wolfgang, Gutiérrez Nils, Insa Sara, Munné Antoni, Sanchís Josep, Solà Carolina, Farré Maria José
Catalan Institute for Water Research (ICRA-CERCA), Carrer Emili Grahit 101, 17003, Girona, Spain.
University of Girona, Plaça de Sant Domènec 3, 17004, Girona, Spain.
Heliyon. 2023 Mar 4;9(3):e14253. doi: 10.1016/j.heliyon.2023.e14253. eCollection 2023 Mar.
Although we have extensive datasets on the location and typology of industries, we do not know much on their generated and discharged wastewater. This lack of information compromises the achievement of the sustainable development goals focused on water (Sustainable Development Goal 6) in Europe and globally. Thus, our goal was to assess to which degree the chemical composition of industrial wastewater could be estimated based on the industry's typology according to its International Standard Industrial Classification of All Economic Activities (ISIC) class. We collected wastewater effluent water samples from 60 industrial wastewater effluents (before any wastewater treatment process), accounting for 5 samples each of 12 ISIC classes, analyzed the composition of key contaminants (i.e. European Commission rated priority compounds and watchlist), and statistically assessed the similarities and differences amongst ISIC classes using ordination and random forest analyses. The results showed statistically significant linkages between most ISIC classes and the composition of produced wastewater. Among the analytical parameters measured, the random forest methodology allowed identifying a sub-set particularly relevant for classification or eventual contamination prediction based on ISIC class. This is an important applied research topic with strong management implications to (i) determine pollution emission caps for each individual ISIC class, (ii) define monitoring schemes to sample and analyze industrial wastewater, and (iii) enable predicting pollutant loads discharged in river basins with scarce information. These encouraging results urge us to expand our work into other ISIC classes and water quality parameters to draw a full picture of the relationship between ISIC classes and produced wastewater.
尽管我们拥有关于产业位置和类型的广泛数据集,但对于它们产生和排放的废水却知之甚少。这种信息缺失不利于在欧洲乃至全球实现聚焦于水的可持续发展目标(可持续发展目标6)。因此,我们的目标是评估根据国际标准产业分类(ISIC)类别,基于产业类型能够在多大程度上估算工业废水的化学成分。我们从60个工业废水排放口(在任何废水处理过程之前)采集了废水样本,每个ISIC类别各有5个样本,分析了关键污染物(即欧盟委员会评定的优先化合物和观察清单)的成分,并使用排序分析和随机森林分析对ISIC类别之间的异同进行了统计评估。结果显示,大多数ISIC类别与产生的废水成分之间存在统计学上的显著关联。在测量的分析参数中,随机森林方法能够识别出基于ISIC类别对于分类或最终污染预测特别相关的一个子集。这是一个具有重要管理意义的重要应用研究课题,有助于(i)确定每个ISIC类别的污染排放上限,(ii)定义工业废水采样和分析的监测方案,以及(iii)在信息匮乏的情况下预测流域内排放的污染物负荷。这些令人鼓舞的结果促使我们将工作扩展到其他ISIC类别和水质参数,以全面了解ISIC类别与产生的废水之间的关系。