Suppr超能文献

基于最短路径轨迹追踪的最大不连通子网发现。

Finding maximally disconnected subnetworks with shortest path tractography.

机构信息

Signal Compression Lab, Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA.

Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, USA.

出版信息

Neuroimage Clin. 2019;23:101903. doi: 10.1016/j.nicl.2019.101903. Epub 2019 Jun 18.

Abstract

Connectome-based lesion symptom mapping (CLSM) can be used to relate disruptions of brain network connectivity with clinical measures. We present a novel method that extends current CLSM approaches by introducing a fast reliable and accurate way for computing disconnectomes, i.e. identifying damaged or lesioned connections. We introduce a new algorithm that finds the maximally disconnected subgraph containing regions and region pairs with the greatest shared connectivity loss. After normalizing a stroke patient's segmented MRI lesion into template space, probability weighted structural connectivity matrices are constructed from shortest paths found in white matter voxel graphs of 210 subjects from the Human Connectome Project. Percent connectivity loss matrices are constructed by measuring the proportion of shortest-path probability weighted connections that are lost because of an intersection with the patient's lesion. Maximally disconnected subgraphs of the overall connectivity loss matrix are then derived using a computationally fast greedy algorithm that closely approximates the exact solution. We illustrate the approach in eleven stroke patients with hemiparesis by identifying expected disconnections of the corticospinal tract (CST) with cortical sensorimotor regions. Major disconnections are found in the thalamus, basal ganglia, and inferior parietal cortex. Moreover, the size of the maximally disconnected subgraph quantifies the extent of cortical disconnection and strongly correlates with multiple clinical measures. The methods provide a fast, reliable approach for both visualizing and quantifying the disconnected portion of a patient's structural connectome based on their routine clinical MRI, without reliance on concomitant diffusion weighted imaging. The method can be extended to large databases of stroke patients, multiple sclerosis or other diseases causing focal white matter injuries helping to better characterize clinically relevant white matter lesions and to identify biomarkers for the recovery potential of individual patients.

摘要

基于连接体的病变症状映射(CLSM)可用于将脑网络连接的中断与临床测量相关联。我们提出了一种新方法,通过引入一种快速、可靠和准确的计算分离网络的方法(即识别受损或病变的连接)来扩展当前的 CLSM 方法。我们引入了一种新算法,该算法找到了包含具有最大共享连接损失的区域和区域对的最大不连通子图。将中风患者的分割 MRI 病变归一化为模板空间后,从 210 名人类连接组计划参与者的白质体素图中找到的最短路径构建概率加权结构连接矩阵。通过测量由于与患者病变相交而丢失的最短路径概率加权连接的比例,构建连通性损失矩阵。然后使用计算快速的贪婪算法从整体连通性损失矩阵中推导出最大不连通子图,该算法紧密逼近精确解。我们通过识别皮质脊髓束(CST)与皮质感觉运动区域的预期断开连接,在 11 名偏瘫中风患者中说明了该方法。在丘脑、基底神经节和下顶叶皮层中发现了主要的断开连接。此外,最大不连通子图的大小量化了皮质连接中断的程度,并且与多个临床测量强烈相关。该方法为基于常规临床 MRI 可视化和量化患者结构连接体的不连通部分提供了一种快速、可靠的方法,而无需依赖伴随的弥散加权成像。该方法可以扩展到中风患者、多发性硬化症或其他导致局灶性白质损伤的疾病的大型数据库中,以帮助更好地描述与临床相关的白质病变,并识别个体患者恢复潜力的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a05/6627647/ce048cbb3cdc/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验