Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
Mol Syst Biol. 2023 May 9;19(5):e11325. doi: 10.15252/msb.202211325. Epub 2023 Mar 20.
The analysis of omic data depends on machine-readable information about protein interactions, modifications, and activities as found in protein interaction networks, databases of post-translational modifications, and curated models of gene and protein function. These resources typically depend heavily on human curation. Natural language processing systems that read the primary literature have the potential to substantially extend knowledge resources while reducing the burden on human curators. However, machine-reading systems are limited by high error rates and commonly generate fragmentary and redundant information. Here, we describe an approach to precisely assemble molecular mechanisms at scale using multiple natural language processing systems and the Integrated Network and Dynamical Reasoning Assembler (INDRA). INDRA identifies full and partial overlaps in information extracted from published papers and pathway databases, uses predictive models to improve the reliability of machine reading, and thereby assembles individual pieces of information into non-redundant and broadly usable mechanistic knowledge. Using INDRA to create high-quality corpora of causal knowledge we show it is possible to extend protein-protein interaction databases and explain co-dependencies in the Cancer Dependency Map.
对组学数据的分析依赖于在蛋白质相互作用网络、翻译后修饰数据库和经过精心整理的基因和蛋白质功能模型中发现的有关蛋白质相互作用、修饰和活性的机器可读信息。这些资源通常严重依赖于人工整理。阅读原始文献的自然语言处理系统具有在减轻人工整理负担的同时扩展知识资源的潜力。但是,机器阅读系统受到高错误率的限制,并且通常会生成零散且冗余的信息。在这里,我们描述了一种使用多种自然语言处理系统和综合网络和动态推理组装器(INDRA)大规模精确组装分子机制的方法。INDRA 识别从已发表的论文和途径数据库中提取的信息中的完整和部分重叠,使用预测模型来提高机器阅读的可靠性,从而将各个信息片段组装成非冗余且广泛可用的机制知识。使用 INDRA 创建高质量的因果知识语料库,我们表明有可能扩展蛋白质-蛋白质相互作用数据库并解释癌症依赖图谱中的共同依赖性。