Ladeira Luiz, Verhoeven Anouk, van Ertvelde Jonas, Jiang Jian, Gamba Alessio, Sanz-Serrano Julen, Vanhaecke Tamara, Heusinkveld Harm J, Jover Ramiro, Vinken Mathieu, Geris Liesbet, Staumont Bernard
Biomechanics Research Unit, GIGA Institute, University of Liège, Liège, Belgium.
Department of Pharmaceutical and Pharmacological Sciences, Entity of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Ixelles, Belgium.
Front Toxicol. 2025 Jul 7;7:1619651. doi: 10.3389/ftox.2025.1619651. eCollection 2025.
methods provide a resourceful toolbox for new approach methodologies (NAMs). They can revolutionize chemical safety assessment by offering more efficient and human-relevant alternatives to traditional animal testing. In this study, we introduce two Liver Physiological Maps (PMs); comprehensive and machine-readable graphical representations of the intricate mechanisms governing two major liver functions.
Two PMs were developed through manual literature curation, integrating data from established pathway resources and domain expert knowledge. Cell-type specificity was validated using Human Protein Atlas datasets. An interactive version is available online for exploration. Cross-comparison analysis with existing Adverse Outcome Pathway (AOP) networks was performed to benchmark physiological coverage and identify knowledge gaps.
The LiverLipidPM focuses on liver lipid metabolism, detailing pathways involved in fatty acid synthesis, triglycerides, cholesterol metabolism, and lipid catabolism in hepatocytes. And the LiverBilePM represents bile acid biosynthesis and secretion processes, detailing biosynthesis, transport, and secretion processes between hepatocytes and cholangiocytes. Both maps integrate metabolism with signaling pathways and regulatory networks. The interactive maps enable visualization of molecular pathways, linkage to external ontologies, and overlay of experimental data. Comparative analysis revealed unique mechanisms to each map and overlaps with existing AOP networks. Chemical-target queries identified new potential targets in both PMs, which might represent new molecular initiating events for AOP network extension.
The developed liver PMs serve as valuable resources for hepatology research, with a special focus on hepatotoxicity, supporting the refinement of AOP networks and the development of human-oriented test batteries for chemical toxicity assessment. These maps provide a foundation for creating computational models and mode-of-action ontologies while potentially extending their utility to systems biology and drug discovery applications.
方法为新方法学(NAMs)提供了一个丰富的工具箱。它们可以通过提供比传统动物试验更高效且与人相关的替代方法,彻底改变化学安全评估。在本研究中,我们引入了两个肝脏生理图谱(PMs);它们是对控制两种主要肝脏功能的复杂机制的全面且机器可读的图形表示。
通过人工文献整理开发了两个PMs,整合了来自既定通路资源的数据和领域专家知识。使用人类蛋白质图谱数据集验证了细胞类型特异性。可在线获取交互式版本以供探索。与现有的不良结局途径(AOP)网络进行交叉比较分析,以衡量生理覆盖范围并识别知识空白。
肝脏脂质PM聚焦于肝脏脂质代谢,详细描述了肝细胞中脂肪酸合成、甘油三酯、胆固醇代谢和脂质分解代谢所涉及的途径。而肝脏胆汁PM代表胆汁酸的生物合成和分泌过程,详细描述了肝细胞和胆管细胞之间的生物合成、运输和分泌过程。两个图谱都将代谢与信号通路和调控网络整合在一起。交互式图谱能够可视化分子途径、与外部本体的链接以及实验数据的叠加。比较分析揭示了每个图谱的独特机制以及与现有AOP网络的重叠之处。化学 - 靶点查询在两个PMs中都识别出了新的潜在靶点,这可能代表了AOP网络扩展的新分子起始事件。
所开发的肝脏PMs是肝脏学研究的宝贵资源,特别关注肝毒性,支持AOP网络的完善以及开发用于化学毒性评估的以人为本的测试组合。这些图谱为创建计算模型和作用模式本体提供了基础,同时有可能将其应用扩展到系统生物学和药物发现领域。