Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000, La Rochelle, France.
CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.
Ecology. 2023 May;104(5):e4034. doi: 10.1002/ecy.4034. Epub 2023 Apr 1.
Climate change is transforming bioenergetic landscapes, challenging behavioral and physiological coping mechanisms. A critical question involves whether animals can adjust behavioral patterns and energy expenditure to stabilize fitness given reconfiguration of resource bases, or whether limits to plasticity ultimately compromise energy balance. In the Arctic, rapidly warming temperatures are transforming food webs, making Arctic organisms strong models for understanding biological implications of climate change-related environmental variability. We examined plasticity in the daily energy expenditure (DEE) of an Arctic seabird, the little auk (Alle alle) in response to variability in climate change-sensitive drivers of resource availability, sea surface temperature (SST) and sea ice coverage (SIC), and tested the hypothesis that energetic ceilings and exposure to mercury, an important neurotoxin and endocrine disrupter in marine ecosystems, may limit scope for plasticity. To estimate DEE, we used accelerometer data obtained across years from two colonies exposed to distinct environmental conditions (Ukaleqarteq [UK], East Greenland; Hornsund [HS], Svalbard). We proceeded to model future changes in SST to predict energetic impacts. At UK, high flight costs linked to low SIC and high SST drove DEE from below to above 4 × basal metabolic rate (BMR), a proposed energetic threshold for breeding birds. However, DEE remained below 7 × BMR, an alternative threshold, and did not plateau. Birds at HS experienced higher, relatively invariable SST, and operated above 4 × BMR. Mercury exposure was unrelated to DEE, and fitness remained stable. Thus, plasticity in DEE currently buffers fitness, providing resiliency against climate change. Nevertheless, modeling suggests that continued warming of SST may promote accelerating increases in DEE, which may become unsustainable.
气候变化正在改变生物能量景观,挑战动物的行为和生理应对机制。一个关键问题是,在资源基础重新配置的情况下,动物是否能够调整行为模式和能量消耗,以稳定适应度,或者可塑性的限制最终是否会损害能量平衡。在北极,快速升温正在改变食物网,使北极生物成为理解与气候变化相关的环境变异性对生物影响的重要模型。我们研究了北极海鸟——北极燕鸥(Alle alle)在应对气候变化敏感的资源可用性驱动因素(海表温度[SST]和海冰覆盖[SIC])的变化时,每日能量消耗(DEE)的可塑性,并检验了以下假设:能量上限和暴露于汞(海洋生态系统中的一种重要神经毒素和内分泌干扰物)可能限制了可塑性的范围。为了估计 DEE,我们使用了在两个暴露于不同环境条件的繁殖地(格陵兰东Ukaleqarteq [UK]和斯瓦尔巴群岛 Hornsund [HS])多年来获得的加速度计数据。然后,我们对 SST 的未来变化进行建模,以预测能量影响。在 UK,低 SIC 和高 SST 导致的高飞行成本使 DEE 从低于基础代谢率(BMR)的水平增加到 4 倍以上,这是一种建议的繁殖鸟类的能量阈值。然而,DEE 仍低于 7 倍 BMR,这是另一个阈值,并没有达到平台期。HS 的鸟类经历了较高的、相对稳定的 SST,并且高于 4 倍 BMR 运行。汞暴露与 DEE 无关,而适应度保持稳定。因此,DEE 的可塑性目前缓冲了适应度,提供了对气候变化的恢复力。然而,模型表明,SST 的持续变暖可能会促进 DEE 的加速增加,这可能变得不可持续。