Fatima Sabeen, Gu Yuqian, Yang Sung Jin, Kutagulla Shanmukh, Rizwan Syed, Akinwande Deji
Physics Characterization and Simulations Lab (PCSL), Department of Physics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 54000, Pakistan.
Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States.
ACS Appl Mater Interfaces. 2023 Mar 29;15(12):16308-16316. doi: 10.1021/acsami.3c00824. Epub 2023 Mar 20.
Two-dimensional (2D) materials have been studied as an emerging class of nanomaterials owing to their attractive properties in nearly every field of science and technology. Molybdenum disulfide (MoS) is one of the more promising candidates of these atomically thin 2D materials for its technological potential. The facile synthesis of MoS remains a matter of broad interest. In this study, MoS was synthesized by chemical vapor deposition sulfurization at various temperatures (550 °C, 650 °C, and 750 °C) of either precursor molybdenum metal (Mo) or molybdenum trioxide (MoO) deposited on silicon/silicon dioxide (Si/SiO) via e-beam evaporation. Monolayer, bilayer, and few layers sulfurized samples have been grown and verified by Raman, photoluminescence spectroscopy, XRD, XPS, and AFM. MoO sulfurization provided monolayer growth in comparison to Mo sulfurization under the same conditions and precursor thicknesses. Optical microscopy showed the homogeneous nature of grown samples. A main finding of this work is that MoO sulfurization produced higher quality MoS as compared to those grown by an Mo precursor. Device characteristics based on monolayer MoO sulfurized MoS include nonvolatile resistive switching with / ≈ 10 at a relatively low operating bias of ±1 V. In addition, field-effect transistor characteristics revealed p-type material growth with a carrier mobility ∼ 41 cm V s, which is in contrast to typically observed n-type characteristics.
二维(2D)材料因其在几乎每一个科学技术领域都具有吸引人的特性而作为一类新兴的纳米材料得到了研究。二硫化钼(MoS₂)因其技术潜力,是这些原子级薄的二维材料中较有前景的候选材料之一。MoS₂的简便合成仍然是一个广受关注的问题。在本研究中,通过化学气相沉积硫化法,在不同温度(550℃、650℃和750℃)下,对通过电子束蒸发沉积在硅/二氧化硅(Si/SiO₂)上的前驱体金属钼(Mo)或三氧化钼(MoO₃)进行硫化,从而合成MoS₂。通过拉曼光谱、光致发光光谱、X射线衍射(XRD)、X射线光电子能谱(XPS)和原子力显微镜(AFM)对单层、双层和少数层硫化样品进行了生长和验证。与相同条件和前驱体厚度下的Mo硫化相比,MoO₃硫化实现了单层生长。光学显微镜显示了生长样品的均匀性。这项工作的一个主要发现是,与由Mo前驱体生长的MoS₂相比,MoO₃硫化产生了更高质量的MoS₂。基于单层MoO₃硫化MoS₂的器件特性包括在相对较低的±1V工作偏压下具有/≈10的非易失性电阻开关。此外,场效应晶体管特性表明生长出了p型材料,载流子迁移率约为41cm²V⁻¹s⁻¹,这与通常观察到的n型特性相反。