Suppr超能文献

评价一个在临床遗传实验室常规使用的用于罕见病的自动化基因组解释模型。

Evaluation of an automated genome interpretation model for rare disease routinely used in a clinical genetic laboratory.

机构信息

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Baylor Genetics, Houston, TX.

Genomic Research Department, Emedgene, an Illumina Company, Tel Aviv, Israel.

出版信息

Genet Med. 2023 Jun;25(6):100830. doi: 10.1016/j.gim.2023.100830. Epub 2023 Mar 16.

Abstract

PURPOSE

The analysis of exome and genome sequencing data for the diagnosis of rare diseases is challenging and time-consuming. In this study, we evaluated an artificial intelligence model, based on machine learning for automating variant prioritization for diagnosing rare genetic diseases in the Baylor Genetics clinical laboratory.

METHODS

The automated analysis model was developed using a supervised learning approach based on thousands of manually curated variants. The model was evaluated on 2 cohorts. The model accuracy was determined using a retrospective cohort comprising 180 randomly selected exome cases (57 singletons, 123 trios); all of which were previously diagnosed and solved through manual interpretation. Diagnostic yield with the modified workflow was estimated using a prospective "production" cohort of 334 consecutive clinical cases.

RESULTS

The model accurately pinpointed all manually reported variants as candidates. The reported variants were ranked in top 10 candidate variants in 98.4% (121/123) of trio cases, in 93.0% (53/57) of single proband cases, and 96.7% (174/180) of all cases. The accuracy of the model was reduced in some cases because of incomplete variant calling (eg, copy number variants) or incomplete phenotypic description.

CONCLUSION

The automated model for case analysis assists clinical genetic laboratories in prioritizing candidate variants effectively. The use of such technology may facilitate the interpretation of genomic data for a large number of patients in the era of precision medicine.

摘要

目的

分析外显子组和基因组测序数据以诊断罕见疾病具有挑战性且耗时。在这项研究中,我们评估了一种基于机器学习的人工智能模型,用于自动化贝勒遗传学临床实验室中罕见遗传性疾病的变异优先级分析。

方法

该自动化分析模型采用基于数千个手工整理变异的监督学习方法进行开发。该模型在两个队列中进行了评估。使用包含 180 个随机选择的外显子组病例(57 个单病例,123 个三病例)的回顾性队列来确定模型准确性;所有病例均通过手动解释进行了先前诊断和解决。使用连续的 334 例临床病例的前瞻性“生产”队列来估计经修改的工作流程的诊断收益。

结果

该模型准确地确定了所有手动报告的变体作为候选变体。在 98.4%(123/123)的三病例、93.0%(53/57)的单病例和 96.7%(174/180)的所有病例中,报告的变体均被列为前 10 个候选变体之一。由于不完全的变异调用(例如,拷贝数变异)或不完全的表型描述,模型的准确性在某些情况下降低。

结论

用于病例分析的自动化模型可帮助临床遗传实验室有效地确定候选变体。在精准医学时代,此类技术的使用可能有助于解释大量患者的基因组数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验