Mukai Kazuhiko, Uyama Takeshi, Nonaka Takamasa
Toyota Central Research and Development Laboratories, Incorporated, 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan.
ACS Appl Mater Interfaces. 2023 Mar 29;15(12):15605-15615. doi: 10.1021/acsami.3c01123. Epub 2023 Mar 20.
Negative electrode materials with high thermal stability are a key strategy for improving the safety of lithium-ion batteries for electric vehicles without requiring built-in safety devices. To search for crucial clues into increasing the thermal stability of these materials, we performed differential scanning calorimetry (DSC) and high-temperature (HT)-X-ray diffraction (XRD)/X-ray absorption (XAS) up to 450 °C with respect to a solid-solution compound of LiZnTiO with 0 ≤ ≤ 0.5. The DSC profile of fully discharged = 0.5 (LiZnTiO) with a LiPF-based electrolyte could be divided into three temperature () regions: (i) ≤ 250 °C for Δ, (ii) 250 °C < ≤ 350 °C for Δ, and (iii) > 350 °C for Δ, where Δ is the accumulated change in enthalpy in region . The HT-XRD/XAS analyses clarified that Δ and Δ originated from the decomposition of solid electrolyte interphase (SEI) films and the formation of a LiF phase, respectively. Comparison of the DSC profiles with = 0 (Li[LiTi]O) and graphite revealed the operating voltage, i.e., amount of SEI films, and stability of the crystal lattice play significant roles in the thermal stability of negative electrode materials. Indeed, the highest thermal stability was attained at = 0.25 using this approach.
具有高热稳定性的负极材料是提高电动汽车锂离子电池安全性的关键策略,无需内置安全装置。为了寻找提高这些材料热稳定性的关键线索,我们对0≤≤0.5的LiZnTiO固溶体化合物进行了差示扫描量热法(DSC)和高达450°C的高温(HT)-X射线衍射(XRD)/X射线吸收(XAS)分析。采用基于LiPF的电解质时,完全放电的 = 0.5(LiZnTiO)的DSC曲线可分为三个温度()区域:(i)对于Δ,≤250°C;(ii)对于Δ,250°C <≤350°C;(iii)对于Δ,> 350°C,其中Δ是区域中焓的累积变化。HT-XRD/XAS分析表明,Δ和Δ分别源于固体电解质界面(SEI)膜的分解和LiF相的形成。将 = 0(Li[LiTi]O)和石墨的DSC曲线进行比较,结果表明工作电压(即SEI膜的量)和晶格稳定性在负极材料的热稳定性中起着重要作用。实际上,使用这种方法在 = 0.25时获得了最高的热稳定性。