Suppr超能文献

用于锂离子电池的双(氟磺酰)亚胺锂中腈类添加剂的热稳定性分析:加速量热法研究

Thermal stability analysis of nitrile additives in LiFSI for lithium-ion batteries: An accelerating rate calorimetry study.

作者信息

Ali Mukarram, Park Siyoung, Raza Asif, Han Cheolhee, Lee Hyobin, Lee Hochun, Lee Yongmin, Doh Chilhoon

机构信息

Next Generation Battery Research Center, Korea Electrotechnology Research Institute (KERI), Changwon, 51543, Republic of Korea.

Department of Electric Materials (Electro-Functional) Engineering, University of Science and Engineering (UST), Changwon, 51543, Republic of Korea.

出版信息

Heliyon. 2024 Apr 9;10(9):e29397. doi: 10.1016/j.heliyon.2024.e29397. eCollection 2024 May 15.

Abstract

Although lithium-ion batteries (LIBs) are extensively used as secondary storage energy devices, they also pose a significant fire and explosion hazard. Subsequently, thermal stability studies for LiPF- and LiFSI-type electrolytes have been conducted extensively. However, the thermal characteristics of these electrolytes with thermally stable additives in a full cell assembly have yet to be explored. This study presents a comprehensive accelerating rate calorimetry (ARC) study. First, 1.2-Ah cells were prepared using a control commercial LiPF electrolyte and LiFSI with a specific succinonitrile additive and ethyl-methyl carbonate as a thermally stable electrolyte additive. The kinetic parameters involved in heat generation and their effects on the thermal properties of the ARC module were analyzed from the heat-wait-seek (HWS), self-heating (SH), and thermal runaway (TR) stages. The results indicate that the addition of a succinonitrile additive to the LiFSI electrolyte lowers the decomposition temperatures of the solid electrolyte interface (SEI) owing to polymerization with Li at the anode, while simultaneously increasing the activation energy of reaction temperatures at SEI between the separator and the electrolyte. The maximum thermal-runaway temperature decreased from 417 °C (Δ = 5.26 kJ) (LiPF) to 285 °C (Δ = 2.068 kJ) (LiFSI + succinonitrile). This study provides key insights to the thermal characteristics of LiPF and LiFSI during the self-heating and thermal runaway stages and indicates a practical method for achieving thermally stable LIBs.

摘要

尽管锂离子电池(LIBs)被广泛用作二次储能装置,但它们也构成了重大的火灾和爆炸危险。随后,对LiPF - 和LiFSI型电解质的热稳定性研究已经广泛开展。然而,在全电池组件中添加热稳定添加剂后这些电解质的热特性尚未得到探索。本研究进行了一项全面的加速量热法(ARC)研究。首先,使用一种对照商用LiPF电解质以及含有特定丁二腈添加剂和碳酸甲乙酯作为热稳定电解质添加剂的LiFSI制备了1.2 - Ah电池。从热等待寻找(HWS)、自热(SH)和热失控(TR)阶段分析了产热所涉及的动力学参数及其对ARC模块热性能的影响。结果表明,向LiFSI电解质中添加丁二腈添加剂会由于在阳极与锂发生聚合反应而降低固体电解质界面(SEI)的分解温度,同时增加隔膜与电解质之间SEI处反应温度的活化能。最大热失控温度从417℃(Δ = 5.26 kJ)(LiPF)降至285℃(Δ = 2.068 kJ)(LiFSI + 丁二腈)。本研究为LiPF和LiFSI在自热和热失控阶段的热特性提供了关键见解,并指出了实现热稳定锂离子电池的实用方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9a3/11061677/3923ca35c010/gr1.jpg

相似文献

1
Thermal stability analysis of nitrile additives in LiFSI for lithium-ion batteries: An accelerating rate calorimetry study.
Heliyon. 2024 Apr 9;10(9):e29397. doi: 10.1016/j.heliyon.2024.e29397. eCollection 2024 May 15.
2
Experimental Study on Thermal-Induced Runaway in High Nickel Ternary Batteries.
ACS Omega. 2022 Apr 19;7(17):14562-14570. doi: 10.1021/acsomega.1c06495. eCollection 2022 May 3.
3
Study on the electrical-thermal properties of lithium-ion battery materials in the NCM622/graphite system.
Front Chem. 2024 Apr 12;12:1403696. doi: 10.3389/fchem.2024.1403696. eCollection 2024.
5
In-Depth Interfacial Chemistry and Reactivity Focused Investigation of Lithium-Imide- and Lithium-Imidazole-Based Electrolytes.
ACS Appl Mater Interfaces. 2016 Jun 29;8(25):16087-100. doi: 10.1021/acsami.6b04406. Epub 2016 Jun 14.
6
Fluorinated Electrolytes for Li-Ion Batteries: The Lithium Difluoro(oxalato)borate Additive for Stabilizing the Solid Electrolyte Interphase.
ACS Omega. 2017 Dec 7;2(12):8741-8750. doi: 10.1021/acsomega.7b01196. eCollection 2017 Dec 31.
7
Fire-Preventing LiPF and Ethylene Carbonate-Based Organic Liquid Electrolyte System for Safer and Outperforming Lithium-Ion Batteries.
ACS Appl Mater Interfaces. 2020 Sep 23;12(38):42868-42879. doi: 10.1021/acsami.0c12702. Epub 2020 Sep 8.
8
An Electrode-Crosstalk-Suppressing Smart Polymer Electrolyte for High Safety Lithium-Ion Batteries.
Adv Mater. 2024 Jun;36(26):e2400737. doi: 10.1002/adma.202400737. Epub 2024 Apr 23.
9
Effects of Imide-Orthoborate Dual-Salt Mixtures in Organic Carbonate Electrolytes on the Stability of Lithium Metal Batteries.
ACS Appl Mater Interfaces. 2018 Jan 24;10(3):2469-2479. doi: 10.1021/acsami.7b15117. Epub 2018 Jan 12.
10

引用本文的文献

本文引用的文献

3
Swelling-Controlled Double-Layered SiO/MgSiO/SiO Composite with Enhanced Initial Coulombic Efficiency for Lithium-Ion Battery.
ACS Appl Mater Interfaces. 2021 Feb 17;13(6):7161-7170. doi: 10.1021/acsami.0c19975. Epub 2021 Feb 4.
4
Thermal runaway of Lithium-ion batteries employing LiN(SOF)-based concentrated electrolytes.
Nat Commun. 2020 Oct 9;11(1):5100. doi: 10.1038/s41467-020-18868-w.
5
Explosion characteristics for Li-ion battery electrolytes at elevated temperatures.
J Hazard Mater. 2019 Jun 5;371:1-7. doi: 10.1016/j.jhazmat.2019.02.108. Epub 2019 Feb 28.
6
Materials for lithium-ion battery safety.
Sci Adv. 2018 Jun 22;4(6):eaas9820. doi: 10.1126/sciadv.aas9820. eCollection 2018 Jun.
7
Safety-Reinforced Succinonitrile-Based Electrolyte with Interfacial Stability for High-Performance Lithium Batteries.
ACS Appl Mater Interfaces. 2017 Sep 6;9(35):29820-29828. doi: 10.1021/acsami.7b09119. Epub 2017 Aug 24.
8
Lithium Metal Anodes with an Adaptive "Solid-Liquid" Interfacial Protective Layer.
J Am Chem Soc. 2017 Apr 5;139(13):4815-4820. doi: 10.1021/jacs.6b13314. Epub 2017 Mar 24.
10
Constructing a Protective Interface Film on Layered Lithium-Rich Cathode Using an Electrolyte Additive with Special Molecule Structure.
ACS Appl Mater Interfaces. 2016 Nov 9;8(44):30116-30125. doi: 10.1021/acsami.6b09554. Epub 2016 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验