Chen Si, Zhang Haoliang, Li Xu, Liu Yong, Zhang Mingyi, Gao Xiangyang, Chang Xin, Pu Xiangjun, He Chunqing
Key Laboratory of Nuclear Solid-State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China.
Dalton Trans. 2023 Apr 11;52(15):4826-4834. doi: 10.1039/d3dt00117b.
Metal-organic frameworks (MOFs) have attracted increasing research interest in various fields. Unfortunately, the poor conductivity of most traditional MOFs considerably hinders their application in energy storage. Benefiting from the full charge delocalization in the atomic plane, two-dimensional conductive coordination frameworks achieve good electrochemical performance. In this work, π-π coupling conductive bismuth-catecholate nanobelts with tunable lengths, Bi(HHTP) (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene), are synthesized by a simple hydrothermal reaction and their length-dependent electrochemical properties are also investigated. The Bi(HHTP) nanobelts (about 10 μm in length) possess appropriate porosity, numerous redox active sites and good electrical conductivity. Being a negative electrode for supercapacitors, Bi(HHTP) nanobelts display a high specific capacitance of 234.0 F g and good cycling stability of 72% after 1000 cycles. Furthermore, the mechanism of charge storage is interpreted for both battery-type and surface-capacitive behavior. It is believed that the results of this work will help to develop battery-type negative electrode materials with promising electrochemical performance using some newly designed π-π coupling conductive coordination frameworks.
金属有机框架材料(MOFs)在各个领域引起了越来越多的研究兴趣。不幸的是,大多数传统MOFs的低导电性极大地阻碍了它们在能量存储中的应用。得益于原子平面内的完全电荷离域,二维导电配位框架具有良好的电化学性能。在这项工作中,通过简单的水热反应合成了具有可调长度的π-π耦合导电铋-儿茶酚纳米带Bi(HHTP)(HHTP = 2,3,6,7,10,11-六羟基三亚苯),并研究了其长度依赖性电化学性质。Bi(HHTP)纳米带(长度约为10μm)具有合适的孔隙率、大量的氧化还原活性位点和良好的导电性。作为超级电容器的负极,Bi(HHTP)纳米带显示出234.0 F g的高比电容和1000次循环后72%的良好循环稳定性。此外,还对电池型和表面电容行为的电荷存储机制进行了解释。相信这项工作的结果将有助于利用一些新设计的π-π耦合导电配位框架开发具有良好电化学性能的电池型负极材料。