Duan Huiyu, Zhao Zhimin, Lu Jiadan, Hu Wenhui, Zhang Yi, Li Shasha, Zhang Mengfei, Zhu Rongmei, Pang Huan
School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China.
ACS Appl Mater Interfaces. 2021 Jul 21;13(28):33083-33090. doi: 10.1021/acsami.1c08161. Epub 2021 Jul 8.
Metal organic frameworks (MOFs) have been widely researched and applied in many fields. However, the poor electrical conductivity of many traditional MOFs greatly limits their application in electrochemistry, especially in energy storage. Benefited from the full charge delocalization in the atomical plane, conductive MOFs (c-MOFs) exhibit good electrochemical performance. Besides, unlike graphene, c-MOFs are provided with 1D cylindrical channels, which can facilitate the ion transport and enable high ion conductivity. Transition-metal oxides (TMOs) are promising materials with good electrochemical energy storage performance due to their excellent oxidation-reduction activity. When composited with TMOs, the c-MOFs can significantly improve the capacitance and rate performance. In this work, for the first time, we designed serial MnO@Ni-HHTP (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) nanoarrays with different lengths and explored how the lengths influence the electrochemical energy storage performance. By taking advantage of the high redox activity of MnO and the excellent electron and ion conductivity in Ni-HHTP, when assembled as the positive electrode material in an aqueous asymmetric supercapacitor, the device displays high energy density, outstanding rate performance, and superior cycle stability. We believe that the results of this work would provide a good prospect for developing other c-MOF composites as a potential class of electrode materials in energy storage and conversion.
金属有机框架材料(MOFs)已在许多领域得到广泛研究和应用。然而,许多传统MOFs的导电性较差,这极大地限制了它们在电化学领域的应用,尤其是在能量存储方面。得益于原子平面内的完全电荷离域,导电MOFs(c-MOFs)表现出良好的电化学性能。此外,与石墨烯不同,c-MOFs具有一维圆柱形通道,这可以促进离子传输并实现高离子导电性。过渡金属氧化物(TMOs)因其优异的氧化还原活性而成为具有良好电化学能量存储性能的有前途的材料。当与TMOs复合时,c-MOFs可以显著提高电容和倍率性能。在这项工作中,我们首次设计了具有不同长度的系列MnO@Ni-HHTP(HHTP = 2,3,6,7,10,11-六羟基三亚苯)纳米阵列,并探索了长度如何影响电化学能量存储性能。通过利用MnO的高氧化还原活性以及Ni-HHTP中优异的电子和离子导电性,当作为水系不对称超级电容器的正极材料组装时,该器件显示出高能量密度、出色的倍率性能和优异的循环稳定性。我们相信这项工作的结果将为开发其他c-MOF复合材料作为能量存储和转换中潜在的一类电极材料提供良好的前景。