Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
Phys Chem Chem Phys. 2023 May 17;25(19):13275-13288. doi: 10.1039/d3cp00404j.
Combining rigid Cu(II) labels and pulsed-EPR techniques enables distance constraint measurements that are incisive probes of protein structure and dynamics. However, the labels can lead to a dipolar signal that is biased by the relative orientation of the two spins, which is typically unknown in a bilabeled protein. This effect, dubbed orientational selectivity, becomes a bottleneck in measuring distances. This phenomenon also applies to other pulsed-EPR techniques that probe electron-nucleus interactions. In this work, we dissect orientational selectivity by generating an sample of Cu(II)-labeled proteins to evaluate pulse excitation in the context of double electron-electron resonance (DEER) at Q-band frequencies. This approach enables the observation of the contribution of each protein orientation to the dipolar signal, which provides direct insights into optimizing acquisition schemes to mitigate orientational effects. Furthermore, we incorporate the excitation profile of realistic pulses to identify the excited spins. With this method, we show that rectangular pulses, despite their imperfect inversion capability, can sample similar spin orientations as other sophisticated pulses with the same bandwidth. Additionally, we reveal that the efficiency of exciting spin-pairs in DEER depends on the frequency offset of two pulses used in the experiment and the relative orientation of the two spins. Therefore, we systematically examine the frequency offset of the two pulses used in this double resonance experiment to determine the optimal frequency offset for optimal distance measurements. This procedure leads to a protocol where two measurements are sufficient to acquire orientational-independent DEER at Q-band. Notably, this procedure is feasible with any commercial pulsed-EPR spectrometer. Furthermore, we experimentally validate the computational results using DEER experiments on two different proteins. Finally, we show that increasing the amplitude of the rectangular pulse can increase the efficiency of DEER experiments by almost threefold. Overall, this work provides an attractive new approach for analyzing pulsed-EPR spectroscopy to obtain microscopic nuances that cannot be easily discerned from analytical or numerical calculations.
将刚性 Cu(II) 标签与脉冲电子顺磁共振 (pulsed-EPR) 技术相结合,可以进行距离约束测量,这些测量是蛋白质结构和动力学的锐利探针。然而,这些标签会导致偶极信号发生偏差,这种偏差取决于两个自旋的相对取向,而在双标记蛋白质中,这种相对取向通常是未知的。这种效应被称为取向选择性,它成为测量距离的瓶颈。这种现象也适用于探测电子-核相互作用的其他脉冲 EPR 技术。在这项工作中,我们通过生成一组 Cu(II) 标记的蛋白质样本来剖析取向选择性,以评估在 Q 波段频率下双电子-电子共振 (DEER) 背景下的脉冲激发。这种方法可以观察到每个蛋白质取向对偶极信号的贡献,从而直接深入了解优化采集方案以减轻取向效应的方法。此外,我们还结合了实际脉冲的激发谱来识别激发的自旋。通过这种方法,我们表明尽管矩形脉冲的反转能力不完美,但它们可以与具有相同带宽的其他复杂脉冲一样,对自旋取向进行采样。此外,我们还揭示了在 DEER 中激发自旋对的效率取决于实验中使用的两个脉冲的频率偏移以及两个自旋的相对取向。因此,我们系统地研究了在这个双共振实验中使用的两个脉冲的频率偏移,以确定用于最佳距离测量的最佳频率偏移。这个过程会产生一个协议,其中两个测量就足以在 Q 波段获得不依赖取向的 DEER。值得注意的是,这个过程可以用任何商业脉冲 EPR 光谱仪来实现。此外,我们使用两个不同蛋白质的 DEER 实验对计算结果进行了实验验证。最后,我们表明,增加矩形脉冲的幅度可以将 DEER 实验的效率提高近三倍。总的来说,这项工作为分析脉冲 EPR 光谱学提供了一种有吸引力的新方法,可以获得从分析或数值计算中不易识别的微观细节。