Suppr超能文献

导电TiCT网络用于优化NaVO(PO)F阴极,以提高倍率性能和低温运行性能。

Conductive TiCT networks to optimize NaVO(PO)F cathodes for improved rate capability and low-temperature operation.

作者信息

Yue Lufeng, Wang Jie, Li Minxi, Qin Jinwen, Cao Minhua

机构信息

Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.

出版信息

Dalton Trans. 2023 Apr 11;52(15):4717-4727. doi: 10.1039/d3dt00124e.

Abstract

NaVO(PO)F (NVOPF) is gaining attention as a high-energy cathode candidate for sodium-ion batteries owing to its wide operating voltage, high energy density and excellent thermal stability. However, its intrinsic poor electrical conductivity results in its current sodium-storage performance being far below expectations. Herein, two-dimensional TiCT MXene nanosheets with excellent electrical conductivity are introduced to construct an interconnected conductive framework to tightly encapsulate NVOPF nanoparticles. The TiCT nanosheets ensure superior electronic contacts, along with inhibiting the agglomeration of NVOPF nanoparticles, thus accelerating electron and ion transfer during sodium-ion de/intercalation and maximizing the storage capacity. As a result, the optimized NVOPF/TiCT cathode exhibits high rate capabilities (111 mA h g at 0.2 C and 78 mA h g at 20 C), with an impressively high capacity retention of 74.8% over a wide temperature range (from -20 to 20 °C). Additionally, the assembled sodium-ion full cell provides a highly reversible capacity of 116 mA h g at 1 C, with a capacity retention of 67.2% after 100 cycles. These inspiring results provide new insights for improving the charge-transfer kinetics of the NVOPF cathode and this methodology may be extended to other cathode materials.

摘要

NaVO(PO)F(NVOPF)因其宽工作电压、高能量密度和优异的热稳定性,作为钠离子电池的高能量正极候选材料而备受关注。然而,其固有的低电导率导致其目前的储钠性能远低于预期。在此,引入具有优异导电性的二维TiCT MXene纳米片,构建相互连接的导电框架,以紧密包裹NVOPF纳米颗粒。TiCT纳米片确保了优异的电子接触,同时抑制了NVOPF纳米颗粒的团聚,从而在钠离子脱嵌/嵌入过程中加速电子和离子转移,并使存储容量最大化。结果,优化后的NVOPF/TiCT正极表现出高倍率性能(0.2 C时为111 mA h g,20 C时为78 mA h g),在宽温度范围(-20至20°C)内具有高达74.8%的容量保持率。此外,组装的钠离子全电池在1 C时提供116 mA h g的高度可逆容量,100次循环后容量保持率为67.2%。这些鼓舞人心的结果为改善NVOPF正极的电荷转移动力学提供了新的见解,并且这种方法可能扩展到其他正极材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验