Suppr超能文献

钠钒磷氟化物(Na(VO)(PO)F)这种前景广阔的高压阴极材料的最新进展与展望

Recent Advances and Perspectives on the Promising High-Voltage Cathode Material of Na (VO) (PO ) F.

作者信息

Yin Ya-Meng, Pei Cunyuan, Xia Wei, Luo Xiaojun, Li Dong-Sheng

机构信息

College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China.

出版信息

Small. 2023 Nov;19(44):e2303666. doi: 10.1002/smll.202303666. Epub 2023 Jul 5.

Abstract

Na (VO) (PO ) F (NVOPF) has emerged as one of the most promising cathode materials for sodium-ion batteries (SIBs) attributed to its high specific capacity (130 mAh g ), high operation voltage (>3.9 V vs Na /Na), and excellent structural stability (<2% volume change). However, the comparatively low intrinsic electronic conductivity (≈10 S cm ) of NVOPF leads to unsatisfactory electrochemical performance, especially at high rates, limiting its practical applications. To improve the conductivity and enhance Na storage performance, many efforts have been devoted to designing NVOPF, including morphology optimization, hybridization with conductive materials, metal-ion doping, Na-site regulation, and F/O ratio adjustment. These attempts have shown some encouraging achievements and shed light on the practical application of NVOPF cathodes. This work aims to provide a general introduction, synthetic methods, and rational design of NVOPF to give a deeper understanding of the recent progress. Additionally, the unique microstructure of NVOPF and its relationship with Na storage properties are also described in detail. The current status, as well as the advances and limitations of such SIB cathode material, are reported. Finally, future perspectives and guidance for advancing high-performance NVOPF cathodes toward practical applications are presented.

摘要

氟代磷酸钒钠(Na(VO)(PO)F,简称NVOPF)已成为钠离子电池(SIBs)中最具潜力的正极材料之一,这归因于其高比容量(130 mAh g)、高工作电压(相对于Na⁺/Na >3.9 V)以及出色的结构稳定性(体积变化<2%)。然而,NVOPF相对较低的本征电子电导率(≈10⁻⁶ S cm)导致其电化学性能不尽人意,尤其是在高倍率下,这限制了它的实际应用。为了提高电导率并增强钠存储性能,人们致力于对NVOPF进行设计,包括形貌优化、与导电材料杂化、金属离子掺杂、钠位点调控以及氟/氧比例调整。这些尝试已取得了一些令人鼓舞的成果,并为NVOPF正极的实际应用提供了思路。这项工作旨在对NVOPF进行全面介绍、合成方法及合理设计,以便更深入地了解其最新进展。此外,还详细描述了NVOPF独特的微观结构及其与钠存储性能的关系。报道了此类SIB正极材料的现状以及进展和局限性。最后,给出了推动高性能NVOPF正极走向实际应用的未来展望和指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验