Suppr超能文献

基于电子健康记录算法识别阿司匹林加重性呼吸系统疾病患者。

Algorithmic Identification of Patients With Aspirin-Exacerbated Respiratory Disease Using an Electronic Health Record.

机构信息

Department of Otolaryngology, SUNY Upstate Medical University, Syracuse, New York, USA.

出版信息

Otolaryngol Head Neck Surg. 2023 Aug;169(2):253-257. doi: 10.1002/ohn.267. Epub 2023 Jan 30.

Abstract

OBJECTIVE

To determine whether an electronic health record (EHR) system can be used to identify cases of aspirin-exacerbated respiratory disease (AERD) in an area outside of a regional referral center with low rates of aspirin desensitization therapy.

STUDY DESIGN

Retrospective chart review single academic tertiary care hospital.

SETTING

Single-site academic tertiary care hospital.

METHODS

Using Epic's SlicerDicer function, an algorithm was created and applied to all patient charts from 2013 to 2021. The algorithm was as follows: "Allergy/Contraindication to NSAIDs OR aspirin" AND "Diagnosis of Nasal polyp AND "Diagnosis of Asthma." Clinical data including demographics, NSAID reaction, and specialist involvement was collected.

RESULTS

A total of 54 potential cases of AERD were identified. Thirty-two were determined to have AERD after chart review, yet 12 of these patients (37.5%) had no mention of AERD within the chart. The 54 patients were stratified into 2 cohorts based on reaction to NSAIDs: respiratory (n = 29) or unspecified (n = 25). Of the patients in the respiratory reaction group, 26 were found to have clinical AERD, demonstrating a positive predictive values (PPV) of 89.7%. The overall PPV was 59.3%. Those with a respiratory reaction to NSAIDS listed in the EHR were more likely to have clinical AERD (odds ratio 27.44; confidence interval 6.08-123.85; p < 0.0001). Only 2 patients (6.3%) underwent aspirin desensitization.

CONCLUSION

AERD remains under-diagnosed in the study population. The informatics algorithm presented here has a high positive predictive value for identifying clinical AERD patients in a geographical area with low rates of aspirin desensitization and may aid in identifying candidates for expanded treatment options.

摘要

目的

确定在一个阿司匹林脱敏治疗率较低的区域外的地区,电子病历(EHR)系统是否可用于识别阿司匹林加重性呼吸道疾病(AERD)病例。

研究设计

回顾性图表审查单学术三级保健医院。

设置

单站点学术三级保健医院。

方法

使用 Epic 的 SlicerDicer 功能,创建了一个算法并应用于 2013 年至 2021 年的所有患者图表。该算法如下:“对 NSAIDs 或阿司匹林的过敏/禁忌症”和“鼻息肉的诊断”和“哮喘的诊断”。收集了包括人口统计学、非甾体抗炎药反应和专家参与在内的临床数据。

结果

共确定了 54 例潜在的 AERD 病例。经过图表审查,确定了 32 例患有 AERD,但其中 12 例(37.5%)图表中没有提到 AERD。根据对 NSAIDs 的反应,将 54 名患者分为 2 组:呼吸道(n=29)或未指明(n=25)。在呼吸道反应组中,有 26 例被发现患有临床 AERD,阳性预测值(PPV)为 89.7%。总体 PPV 为 59.3%。EHR 中列出对 NSAIDs 有呼吸道反应的患者更有可能患有临床 AERD(比值比 27.44;置信区间 6.08-123.85;p<0.0001)。只有 2 名患者(6.3%)接受了阿司匹林脱敏治疗。

结论

在研究人群中,AERD 的诊断仍然不足。本文提出的信息学算法对识别阿司匹林脱敏治疗率较低的地理区域内的临床 AERD 患者具有较高的阳性预测值,可能有助于确定扩大治疗选择的候选者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验