Suppr超能文献

深度强化学习在嗅觉搜索 POMDP 中的应用:定量基准

Deep reinforcement learning for the olfactory search POMDP: a quantitative benchmark.

机构信息

Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, Marseille, France.

Department of Physics and INFN, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy.

出版信息

Eur Phys J E Soft Matter. 2023 Mar 20;46(3):17. doi: 10.1140/epje/s10189-023-00277-8.

Abstract

The olfactory search POMDP (partially observable Markov decision process) is a sequential decision-making problem designed to mimic the task faced by insects searching for a source of odor in turbulence, and its solutions have applications to sniffer robots. As exact solutions are out of reach, the challenge consists in finding the best possible approximate solutions while keeping the computational cost reasonable. We provide a quantitative benchmarking of a solver based on deep reinforcement learning against traditional POMDP approximate solvers. We show that deep reinforcement learning is a competitive alternative to standard methods, in particular to generate lightweight policies suitable for robots.

摘要

嗅觉搜索 POMDP(部分可观测马尔可夫决策过程)是一个序贯决策问题,旨在模拟昆虫在湍流中寻找气味源时所面临的任务,其解决方案可应用于嗅探机器人。由于无法获得精确解,因此挑战在于在保持计算成本合理的同时,找到尽可能好的近似解。我们对基于深度强化学习的求解器与传统 POMDP 近似求解器进行了定量基准测试。我们表明,深度强化学习是标准方法的一种有竞争力的替代方案,特别是生成适合机器人的轻量级策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验