文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

严重急性呼吸综合征冠状病毒2变异株B.1.617.2与抗体CR3022的相互作用见解及抗体抗性分析

Insights on the interaction of SARS-CoV-2 variant B.1.617.2 with antibody CR3022 and analysis of antibody resistance.

作者信息

Ks Sandhya, Nair Achuthsankar S

机构信息

Department of Computational Biology and Bioinformatics, University of Kerala, Kerala, Thiruvananthapuram, India.

Malankara Catholic College, Mariagiri, Kaliakkavilai, Kanyakumari, 629153, Tamil Nadu, India.

出版信息

J Genet Eng Biotechnol. 2023 Mar 20;21(1):35. doi: 10.1186/s43141-023-00492-y.


DOI:10.1186/s43141-023-00492-y
PMID:36940010
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10026237/
Abstract

BACKGROUND: The existence of mutated Delta (B.1.617.2) variants of SARS-CoV-2 causes rapid transmissibility, increase in virulence, and decrease in the effectiveness of public health. Majority of mutations are seen in the surface spike, and they are considered as antigenicity and immunogenicity of the virus. Hence, finding suitable cross antibody or natural antibody and understanding its biomolecular recognition for neutralizing surface spike are crucial for developing many clinically approved COVID-19 vaccines. Here, we aim to design SARS-CoV-2 variant and hence, to understand its mechanism, binding affinity and neutralization potential with several antibodies. RESULTS: In this study, we modelled six feasible spike protein (S1) configurations for Delta SARS-CoV-2 (B.1.617.2) and identified the best structure to interact with human antibodies. Initially, the impact of mutations at the receptor-binding domain (RBD) of B.1.617.2 was tested, and it is found that all mutations increase the stability of proteins (ΔΔG) and decrease the entropies. An exceptional case is noted for the mutation of G614D variant for which the vibration entropy change is found to be within the range of 0.133-0.004 kcal/mol/K. Temperature-dependent free energy change values (ΔG) for wild type is found to be - 0.1 kcal/mol, whereas all other cases exhibit values within the range of - 5.1 to - 5.5 kcal/mol. Mutation on spike increases the interaction with the glycoprotein antibody CR3022 and the binding affinity (CLUSpro energy =  - 99.7 kcal/mol). The docked Delta variant with the following antibodies, etesevimab, bebtelovimab, BD-368-2, imdevimab, bamlanivimab, and casirivimab, exhibit a substantially decreased docking score (- 61.7 to - 112.0 kcal/mol) and the disappearance of several hydrogen bond interactions. CONCLUSION: Characterization of antibody resistance for Delta variant with respect to the wild type gives understanding regarding why Delta variant endures the resistance boosted through several trademark vaccines. Several interactions with CR3022 have appeared compared to Wild for Delta variant, and hence, it is suggested that modification on the CR3022 antibody could further improve for the prevention of viral spread. Antibody resistance decreased significantly due to numerous hydrogen bond interactions which clearly indicate that these marketed/launched vaccines (etesevimab) will be effective for Delta variants.

摘要

背景:严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的变异德尔塔毒株(B.1.617.2)的存在导致其传播迅速、毒力增加以及公共卫生防控效果下降。大多数突变出现在表面刺突蛋白上,这些突变被认为与病毒的抗原性和免疫原性有关。因此,找到合适的交叉抗体或天然抗体并了解其对中和表面刺突蛋白的生物分子识别,对于开发许多临床批准的新冠疫苗至关重要。在此,我们旨在设计SARS-CoV-2变异毒株,并了解其与几种抗体的作用机制、结合亲和力和中和潜力。 结果:在本研究中,我们对德尔塔SARS-CoV-2(B.1.617.2)的六种可行刺突蛋白(S1)构型进行了建模,并确定了与人类抗体相互作用的最佳结构。最初,测试了B.1.617.2受体结合域(RBD)处突变的影响,发现所有突变均增加了蛋白质的稳定性(ΔΔG)并降低了熵。G614D变异的突变是一个例外,其振动熵变在0.133 - 0.004千卡/摩尔/开尔文范围内。野生型的温度依赖性自由能变化值(ΔG)为-0.1千卡/摩尔,而所有其他情况的值在-5.1至-5.5千卡/摩尔范围内。刺突蛋白上的突变增加了与糖蛋白抗体CR3022的相互作用以及结合亲和力(CLUSpro能量 = -99.7千卡/摩尔)。将德尔塔变异毒株与以下抗体(etesevimab、bebtelovimab、BD-368-2、imdevimab、bamlanivimab和casirivimab)对接后,对接分数大幅降低(-61.7至-112.0千卡/摩尔),并且一些氢键相互作用消失。 结论:对德尔塔变异毒株相对于野生型的抗体抗性进行表征,有助于理解为何德尔塔变异毒株能耐受几种标志性疫苗所激发的抗性。与野生型相比,德尔塔变异毒株与CR3022出现了几种相互作用,因此,建议对CR3022抗体进行修饰,以进一步改善对病毒传播 的预防。由于大量氢键相互作用,抗体抗性显著降低,这清楚地表明这些已上市/已推出的疫苗(etesevimab)对德尔塔变异毒株将是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489d/10027984/0c715370916f/43141_2023_492_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489d/10027984/4603388fd6e1/43141_2023_492_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489d/10027984/243684baf1d1/43141_2023_492_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489d/10027984/8f1c4b9d3667/43141_2023_492_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489d/10027984/3766aa54eb92/43141_2023_492_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489d/10027984/dce22c675335/43141_2023_492_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489d/10027984/2c7753b828e7/43141_2023_492_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489d/10027984/766c5cb5ca4d/43141_2023_492_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489d/10027984/0c715370916f/43141_2023_492_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489d/10027984/4603388fd6e1/43141_2023_492_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489d/10027984/243684baf1d1/43141_2023_492_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489d/10027984/8f1c4b9d3667/43141_2023_492_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489d/10027984/3766aa54eb92/43141_2023_492_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489d/10027984/dce22c675335/43141_2023_492_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489d/10027984/2c7753b828e7/43141_2023_492_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489d/10027984/766c5cb5ca4d/43141_2023_492_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489d/10027984/0c715370916f/43141_2023_492_Fig8_HTML.jpg

相似文献

[1]
Insights on the interaction of SARS-CoV-2 variant B.1.617.2 with antibody CR3022 and analysis of antibody resistance.

J Genet Eng Biotechnol. 2023-3-20

[2]
Interaction analysis of SARS-CoV-2 omicron BA1 and BA2 of RBD with fifty monoclonal antibodies: Molecular dynamics approach.

J Mol Graph Model. 2024-5

[3]
Structure Based Affinity Maturation and Characterizing of SARS-CoV Antibody CR3022 against SARS-CoV-2 by Computational and Experimental Approaches.

Viruses. 2022-1-19

[4]
Exploring the role of framework mutations in enabling breadth of a cross-reactive antibody (CR3022) against the SARS-CoV-2 RBD and its variants of concern.

J Biomol Struct Dyn. 2023-4

[5]
Investigation of the binding and dynamic features of A.30 variant revealed higher binding of RBD for hACE2 and escapes the neutralizing antibody: A molecular simulation approach.

Comput Biol Med. 2022-7

[6]
Plant-Derived Antiviral Compounds as Potential Entry Inhibitors against Spike Protein of SARS-CoV-2 Wild-Type and Delta Variant: An Integrative in SilicoApproach.

Molecules. 2022-3-8

[7]
Mechanistic Insights to the Binding of Antibody CR3022 Against RBD from SARS-CoV and HCoV-19/SARS-CoV-2: A Computational Study.

Comb Chem High Throughput Screen. 2021

[8]
A Glycosylated RBD Protein Induces Enhanced Neutralizing Antibodies against Omicron and Other Variants with Improved Protection against SARS-CoV-2 Infection.

J Virol. 2022-9-14

[9]
Antibody-nanobody combination increases their neutralizing activity against SARS-CoV-2 and nanobody H11-H4 is effective against Alpha, Kappa and Delta variants.

Sci Rep. 2022-6-11

[10]
In vitro data suggest that Indian delta variant B.1.617 of SARS-CoV-2 escapes neutralization by both receptor affinity and immune evasion.

Allergy. 2022-1

引用本文的文献

[1]
Fc-Binding Cyclopeptide Induces Allostery from Fc to Fab: Revealed Through in Silico Structural Analysis to Anti-Phenobarbital Antibody.

Foods. 2025-4-15

本文引用的文献

[1]
The Impact of Mutations on the Pathogenic and Antigenic Activity of SARS-CoV-2 during the First Wave of the COVID-19 Pandemic: A Comprehensive Immunoinformatics Analysis.

Vaccines (Basel). 2021-11-30

[2]
Affinity enhancement of CR3022 binding to RBD; site directed mutagenesis using molecular dynamics simulation approaches.

J Biomol Struct Dyn. 2023-1

[3]
Molecular strategies for antibody binding and escape of SARS-CoV-2 and its mutations.

Sci Rep. 2021-11-5

[4]
Structure-Function Analysis of Resistance to Bamlanivimab by SARS-CoV-2 Variants Kappa, Delta, and Lambda.

J Chem Inf Model. 2021-10-25

[5]
Exploring the immune evasion of SARS-CoV-2 variant harboring E484K by molecular dynamics simulations.

Brief Bioinform. 2022-1-17

[6]
Investigation of nonsynonymous mutations in the spike protein of SARS-CoV-2 and its interaction with the ACE2 receptor by molecular docking and MM/GBSA approach.

Comput Biol Med. 2021-8

[7]
SARS-CoV-2 B.1.617 Mutations L452R and E484Q Are Not Synergistic for Antibody Evasion.

J Infect Dis. 2021-9-17

[8]
Insilico study on the effect of SARS-CoV-2 RBD hotspot mutants' interaction with ACE2 to understand the binding affinity and stability.

Virology. 2021-9

[9]
Neutralising capacity against Delta (B.1.617.2) and other variants of concern following Comirnaty (BNT162b2, BioNTech/Pfizer) vaccination in health care workers, Israel.

Euro Surveill. 2021-7

[10]
SARS-CoV-2 variants of concern are emerging in India.

Nat Med. 2021-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索