文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过分子对接和 MM/GBSA 方法研究 SARS-CoV-2 刺突蛋白中的非同义突变及其与 ACE2 受体的相互作用。

Investigation of nonsynonymous mutations in the spike protein of SARS-CoV-2 and its interaction with the ACE2 receptor by molecular docking and MM/GBSA approach.

机构信息

Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.

Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.

出版信息

Comput Biol Med. 2021 Aug;135:104654. doi: 10.1016/j.compbiomed.2021.104654. Epub 2021 Jul 16.


DOI:10.1016/j.compbiomed.2021.104654
PMID:34346317
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8282961/
Abstract

COVID-19 is an infectious and pathogenic viral disease caused by SARS-CoV-2 that leads to septic shock, coagulation dysfunction, and acute respiratory distress syndrome. The spreading rate of SARS-CoV-2 is higher than MERS-CoV and SARS-CoV. The receptor-binding domain (RBD) of the Spike-protein (S-protein) interacts with the human cells through the host angiotensin-converting enzyme 2 (ACE2) receptor. However, the molecular mechanism of pathological mutations of S-protein is still unclear. In this perspective, we investigated the impact of mutations in the S-protein and their interaction with the ACE2 receptor for SAR-CoV-2 viral infection. We examined the stability of pathological nonsynonymous mutations in the S-protein, and the binding behavior of the ACE2 receptor with the S-protein upon nonsynonymous mutations using the molecular docking and MM_GBSA approaches. Using the extensive bioinformatics pipeline, we screened the destabilizing (L8V, L8W, L18F, Y145H, M153T, F157S, G476S, L611F, A879S, C1247F, and C1254F) and stabilizing (H49Y, S50L, N501Y, D614G, A845V, and P1143L) nonsynonymous mutations in the S-protein. The docking and binding free energy (ddG) scores revealed that the stabilizing nonsynonymous mutations show increased interaction between the S-protein and the ACE2 receptor compared to native and destabilizing S-proteins and that they may have been responsible for the virulent high level. Further, the molecular dynamics simulation (MDS) approach reveals the structural transition of mutants (N501Y and D614G) S-protein. These insights might help researchers to understand the pathological mechanisms of the S-protein and provide clues regarding mutations in viral infection and disease propagation. Further, it helps researchers to develop an efficient treatment approach against this SARS-CoV-2 pandemic.

摘要

新型冠状病毒肺炎(COVID-19)是一种由严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)引起的传染性和致病性病毒性疾病,可导致脓毒症休克、凝血功能障碍和急性呼吸窘迫综合征。SARS-CoV-2 的传播速度高于中东呼吸综合征冠状病毒(MERS-CoV)和严重急性呼吸综合征冠状病毒(SARS-CoV)。S 蛋白(Spike-protein)的受体结合域(receptor-binding domain,RBD)通过宿主血管紧张素转化酶 2(angiotensin-converting enzyme 2,ACE2)受体与人类细胞相互作用。然而,S 蛋白病理性突变的分子机制尚不清楚。在这一观点中,我们研究了 S 蛋白突变及其与 ACE2 受体相互作用对 SARS-CoV-2 病毒感染的影响。我们使用分子对接和 MM_GBSA 方法,研究了 S 蛋白中病理性非同义突变的稳定性,以及 ACE2 受体与 S 蛋白非同义突变后的结合行为。利用广泛的生物信息学分析,我们筛选了 S 蛋白中不稳定(L8V、L8W、L18F、Y145H、M153T、F157S、G476S、L611F、A879S、C1247F 和 C1254F)和稳定(H49Y、S50L、N501Y、D614G、A845V 和 P1143L)非同义突变。对接和结合自由能(ddG)评分表明,与天然和不稳定的 S 蛋白相比,稳定的非同义突变显示出 S 蛋白与 ACE2 受体之间更强的相互作用,并且它们可能是导致高毒性水平的原因。此外,分子动力学模拟(molecular dynamics simulation,MDS)方法揭示了突变体(N501Y 和 D614G)S 蛋白的结构转变。这些发现可能有助于研究人员了解 S 蛋白的病理机制,并为病毒感染和疾病传播的突变提供线索。此外,它还有助于研究人员开发针对这种 SARS-CoV-2 大流行的有效治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/27ec1381491c/gr9_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/dd579941bb88/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/ab02ba6fa96c/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/dc3c269a30c3/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/1527ee432454/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/8fd6b7ba6f8c/gr5a_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/1677720fc47a/gr5b_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/8c7f6156517a/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/c4d7af1903de/gr7a_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/6d7bad213a2f/gr7b_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/d8ab33a46cec/gr7c_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/2b5c3d196d4b/gr7d_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/f3319bfa54f4/gr7e_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/dec0a9fc6b71/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/27ec1381491c/gr9_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/dd579941bb88/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/ab02ba6fa96c/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/dc3c269a30c3/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/1527ee432454/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/8fd6b7ba6f8c/gr5a_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/1677720fc47a/gr5b_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/8c7f6156517a/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/c4d7af1903de/gr7a_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/6d7bad213a2f/gr7b_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/d8ab33a46cec/gr7c_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/2b5c3d196d4b/gr7d_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/f3319bfa54f4/gr7e_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/dec0a9fc6b71/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512e/8282961/27ec1381491c/gr9_lrg.jpg

相似文献

[1]
Investigation of nonsynonymous mutations in the spike protein of SARS-CoV-2 and its interaction with the ACE2 receptor by molecular docking and MM/GBSA approach.

Comput Biol Med. 2021-8

[2]
Computational modeling of the effect of five mutations on the structure of the ACE2 receptor and their correlation with infectivity and virulence of some emerged variants of SARS-CoV-2 suggests mechanisms of binding affinity dysregulation.

Chem Biol Interact. 2022-12-1

[3]
Molecular dynamic simulation analysis of SARS-CoV-2 spike mutations and evaluation of ACE2 from pets and wild animals for infection risk.

Comput Biol Chem. 2022-2

[4]
Probing structural basis for enhanced binding of SARS-CoV-2 P.1 variant spike protein with the human ACE2 receptor.

J Cell Biochem. 2022-7

[5]
Insilico study on the effect of SARS-CoV-2 RBD hotspot mutants' interaction with ACE2 to understand the binding affinity and stability.

Virology. 2021-9

[6]
Receptor binding domain of SARS-CoV-2 from Wuhan strain to Omicron B.1.1.529 attributes increased affinity to variable structures of human ACE2.

J Infect Public Health. 2022-7

[7]
Identification of potential SARS-CoV-2 entry inhibitors by targeting the interface region between the spike RBD and human ACE2.

J Infect Public Health. 2021-2

[8]
Investigation on the interaction mechanism of different SARS-CoV-2 spike variants with hACE2: insights from molecular dynamics simulations.

Phys Chem Chem Phys. 2023-1-18

[9]
Understanding the molecular interaction of SARS-CoV-2 spike mutants with ACE2 (angiotensin converting enzyme 2).

J Biomol Struct Dyn. 2022

[10]
In silico binding profile characterization of SARS-CoV-2 spike protein and its mutants bound to human ACE2 receptor.

Brief Bioinform. 2021-11-5

引用本文的文献

[1]
An Italian Single-Center Genomic Surveillance Study: Two-Year Analysis of SARS-CoV-2 Spike Protein Mutations.

Int J Mol Sci. 2025-8-5

[2]
anti-viral assessment of phytoconstituents in a traditional (Siddha Medicine) polyherbal formulation - Targeting Mpro and pan-coronavirus post-fusion Spike protein.

J Tradit Complement Med. 2023-7-13

[3]
Genomic epidemiology reveals early transmission of SARS-CoV-2 and mutational dynamics in Nanning, China.

Heliyon. 2023-11-29

[4]
Structural and pKa Estimation of the Amphipathic HR1 in SARS-CoV-2: Insights from Constant pH MD, Linear vs. Nonlinear Normal Mode Analysis.

Int J Mol Sci. 2023-11-10

[5]
identification of natural compounds against SARS-CoV-2 main protease from Chinese herbal medicines.

Future Sci OA. 2023-6-14

[6]
Repurposing and computational design of PARP inhibitors as SARS-CoV-2 inhibitors.

Sci Rep. 2023-6-29

[7]
Role of Natural Products in the Management of COVID-19: A Saudi Arabian Perspective.

Healthcare (Basel). 2023-5-28

[8]
Design of novel pyrimidine based remdesivir analogues with dual target specificity for SARS CoV-2: A computational approach.

Int J Biol Macromol. 2023-7-1

[9]
Deciphering molecular mechanisms of SARS-CoV-2 pathogenesis and drug repurposing through GRN motifs: a comprehensive systems biology study.

3 Biotech. 2023-4

[10]
Molecular insights into the inhibition mechanism of harringtonine against essential proteins associated with SARS-CoV-2 entry.

Int J Biol Macromol. 2023-6-15

本文引用的文献

[1]
N501Y and K417N Mutations in the Spike Protein of SARS-CoV-2 Alter the Interactions with Both hACE2 and Human-Derived Antibody: A Free Energy of Perturbation Retrospective Study.

J Chem Inf Model. 2021-12-27

[2]
A computational approach for rational discovery of inhibitors for non-structural protein 1 of SARS-CoV-2.

Comput Biol Med. 2021-8

[3]
Structural and Dynamical Differences in the Spike Protein RBD in the SARS-CoV-2 Variants B.1.1.7 and B.1.351.

J Phys Chem B. 2021-7-8

[4]
Alemtuzumab scFv fragments and CD52 interaction study through molecular dynamics simulation and binding free energy.

J Mol Graph Model. 2021-9

[5]
In silico investigation of critical binding pattern in SARS-CoV-2 spike protein with angiotensin-converting enzyme 2.

Sci Rep. 2021-3-25

[6]
Higher infectivity of the SARS-CoV-2 new variants is associated with K417N/T, E484K, and N501Y mutants: An insight from structural data.

J Cell Physiol. 2021-10

[7]
Computational Mutagenesis at the SARS-CoV-2 Spike Protein/Angiotensin-Converting Enzyme 2 Binding Interface: Comparison with Experimental Evidence.

ACS Nano. 2021-4-27

[8]
Enhanced binding of the N501Y-mutated SARS-CoV-2 spike protein to the human ACE2 receptor: insights from molecular dynamics simulations.

FEBS Lett. 2021-5

[9]
The new SARS-CoV-2 strain shows a stronger binding affinity to ACE2 due to N501Y mutant.

Med Drug Discov. 2021-6

[10]
Bioinformatics Analysis of SARS-CoV-2 to Approach an Effective Vaccine Candidate Against COVID-19.

Mol Biotechnol. 2021-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索