Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
Comput Biol Med. 2021 Aug;135:104654. doi: 10.1016/j.compbiomed.2021.104654. Epub 2021 Jul 16.
COVID-19 is an infectious and pathogenic viral disease caused by SARS-CoV-2 that leads to septic shock, coagulation dysfunction, and acute respiratory distress syndrome. The spreading rate of SARS-CoV-2 is higher than MERS-CoV and SARS-CoV. The receptor-binding domain (RBD) of the Spike-protein (S-protein) interacts with the human cells through the host angiotensin-converting enzyme 2 (ACE2) receptor. However, the molecular mechanism of pathological mutations of S-protein is still unclear. In this perspective, we investigated the impact of mutations in the S-protein and their interaction with the ACE2 receptor for SAR-CoV-2 viral infection. We examined the stability of pathological nonsynonymous mutations in the S-protein, and the binding behavior of the ACE2 receptor with the S-protein upon nonsynonymous mutations using the molecular docking and MM_GBSA approaches. Using the extensive bioinformatics pipeline, we screened the destabilizing (L8V, L8W, L18F, Y145H, M153T, F157S, G476S, L611F, A879S, C1247F, and C1254F) and stabilizing (H49Y, S50L, N501Y, D614G, A845V, and P1143L) nonsynonymous mutations in the S-protein. The docking and binding free energy (ddG) scores revealed that the stabilizing nonsynonymous mutations show increased interaction between the S-protein and the ACE2 receptor compared to native and destabilizing S-proteins and that they may have been responsible for the virulent high level. Further, the molecular dynamics simulation (MDS) approach reveals the structural transition of mutants (N501Y and D614G) S-protein. These insights might help researchers to understand the pathological mechanisms of the S-protein and provide clues regarding mutations in viral infection and disease propagation. Further, it helps researchers to develop an efficient treatment approach against this SARS-CoV-2 pandemic.
新型冠状病毒肺炎(COVID-19)是一种由严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)引起的传染性和致病性病毒性疾病,可导致脓毒症休克、凝血功能障碍和急性呼吸窘迫综合征。SARS-CoV-2 的传播速度高于中东呼吸综合征冠状病毒(MERS-CoV)和严重急性呼吸综合征冠状病毒(SARS-CoV)。S 蛋白(Spike-protein)的受体结合域(receptor-binding domain,RBD)通过宿主血管紧张素转化酶 2(angiotensin-converting enzyme 2,ACE2)受体与人类细胞相互作用。然而,S 蛋白病理性突变的分子机制尚不清楚。在这一观点中,我们研究了 S 蛋白突变及其与 ACE2 受体相互作用对 SARS-CoV-2 病毒感染的影响。我们使用分子对接和 MM_GBSA 方法,研究了 S 蛋白中病理性非同义突变的稳定性,以及 ACE2 受体与 S 蛋白非同义突变后的结合行为。利用广泛的生物信息学分析,我们筛选了 S 蛋白中不稳定(L8V、L8W、L18F、Y145H、M153T、F157S、G476S、L611F、A879S、C1247F 和 C1254F)和稳定(H49Y、S50L、N501Y、D614G、A845V 和 P1143L)非同义突变。对接和结合自由能(ddG)评分表明,与天然和不稳定的 S 蛋白相比,稳定的非同义突变显示出 S 蛋白与 ACE2 受体之间更强的相互作用,并且它们可能是导致高毒性水平的原因。此外,分子动力学模拟(molecular dynamics simulation,MDS)方法揭示了突变体(N501Y 和 D614G)S 蛋白的结构转变。这些发现可能有助于研究人员了解 S 蛋白的病理机制,并为病毒感染和疾病传播的突变提供线索。此外,它还有助于研究人员开发针对这种 SARS-CoV-2 大流行的有效治疗方法。
Healthcare (Basel). 2023-5-28
Med Drug Discov. 2021-6