Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668, Warsaw, Poland.
Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam.
Sci Rep. 2022 Jun 11;12(1):9701. doi: 10.1038/s41598-022-14263-1.
The global spread of COVID-19 is devastating health systems and economies worldwide. While the use of vaccines has yielded encouraging results, the emergence of new variants of SARS-CoV-2 shows that combating COVID-19 remains a big challenge. One of the most promising treatments is the use of not only antibodies, but also nanobodies. Recent experimental studies revealed that the combination of antibody and nanobody can significantly improve their neutralizing ability through binding to the SARS-CoV-2 spike protein, but the molecular mechanisms underlying this observation remain largely unknown. In this work, we investigated the binding affinity of the CR3022 antibody and H11-H4 nanobody to the SARS-CoV-2 receptor binding domain (RBD) using molecular modeling. Both all-atom steered molecular dynamics simulations and coarse-grained umbrella sampling showed that, consistent with the experiment, CR3022 associates with RBD more strongly than H11-H4. We predict that the combination of CR3022 and H11-H4 considerably increases their binding affinity to the spike protein. The electrostatic interaction was found to control the association strength of CR3022, but the van der Waals interaction dominates in the case of H11-H4. However, our study for a larger set of nanobodies and antibodies showed that the relative role of these interactions depends on the specific complex. Importantly, we showed Beta, Gamma, Lambda, and Mu variants reduce the H11-H4 activity while Alpha, Kappa and Delta variants increase its neutralizing ability, which is in line with experiment reporting that the nanobody elicited from the llama is very promising for fighting against the Delta variant.
COVID-19 在全球范围内的传播正在摧毁世界各地的卫生系统和经济。虽然疫苗的使用已经取得了令人鼓舞的结果,但 SARS-CoV-2 的新变种的出现表明,抗击 COVID-19 仍然是一个巨大的挑战。最有前途的治疗方法之一是不仅使用抗体,还使用纳米抗体。最近的实验研究表明,抗体和纳米抗体的结合可以通过与 SARS-CoV-2 刺突蛋白结合显著提高其中和能力,但这一观察结果的分子机制在很大程度上仍不清楚。在这项工作中,我们使用分子建模研究了 CR3022 抗体和 H11-H4 纳米抗体与 SARS-CoV-2 受体结合域(RBD)的结合亲和力。全原子引导分子动力学模拟和粗粒伞状采样都表明,与实验一致,CR3022 与 RBD 的结合比 H11-H4 更强。我们预测,CR3022 和 H11-H4 的结合将大大提高它们与刺突蛋白的结合亲和力。静电相互作用被发现控制了 CR3022 的结合强度,但在 H11-H4 的情况下,范德华相互作用占主导地位。然而,我们对更大的纳米抗体和抗体集合进行的研究表明,这些相互作用的相对作用取决于特定的复合物。重要的是,我们表明 Beta、Gamma、Lambda 和 Mu 变体降低了 H11-H4 的活性,而 Alpha、Kappa 和 Delta 变体提高了其中和能力,这与实验报告一致,即从骆驼中提取的纳米抗体对抗 Delta 变体非常有前途。