Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
Med Phys. 2023 Jun;50(6):3324-3337. doi: 10.1002/mp.16375. Epub 2023 Mar 24.
Absorbable hydrogel spacer injected between prostate and rectum is gaining popularity for rectal sparing. The spacer alters patient anatomy and thus requires new auto-contouring models.
To report the development and comprehensive evaluation of two deep-learning models for patients injected with a radio-transparent (model I) versus radiopaque (model II) spacer.
Model I was trained and cross-validated by 135 cases with transparent spacer and tested on 24 cases. Using refined training methods, model II was trained and cross-validated by the same dataset, but with the Hounsfield Unit distribution in the spacer overridden by that obtained from ten cases with opaque spacer. Model II was tested on 64 cases. The models auto-contour eight regions of interest (ROIs): spacer, prostate, proximal seminal vesicles (SVs), left and right femurs, bladder, rectum, and penile bulb. Qualitatively, each auto contour (AC), as well as the composite set, was assessed against manual contour (MC), by a radiation oncologist using a 1 (accepted directly or after minor editing), 2 (accepted after moderate editing), 3 (accepted after major editing), and 4 (rejected) scoring scale. The efficiency gain was characterized by the mean score as nearly complete [1-1.75], substantial (1.75-2.5], meaningful (2.5-3.25], and no (3.25-4.00]. Quantitatively, the geometric similarity between AC and MC was evaluated by dice similarity coefficient (DSC) and mean distance to agreement (MDA), using tolerance recommended by AAPM TG-132 Report. The results by the two models were compared to examine the outcome of the refined training methods. The large number of testing cases for model II allowed further investigation of inter-observer variability in clinical dataset. The correlation between score and DSC/MDA was studied on the ROIs with 10 or more counts of each acceptable score (1, 2, 3).
For model I/model II: the mean score was 3.63/1.30 for transparent/opaque spacer, 2.71/2.16 for prostate, 3.25/2.44 for proximal SVs, 1.13/1.02 for both femurs, 2.25/1.25 for bladder, 3.00/2.06 for rectum, 3.38/2.42 for penile bulb, and 2.79/2.20 for the composite set; the mean DSC was 0.52/0.84 for spacer, 0.84/0.85 for prostate, 0.60/0.62 for proximal SVs, 0.94/0.96 for left femur, 0.95/0.96 for right femur, 0.91/0.95 for bladder, 0.81/0.84 for rectum, and 0.65/0.65 for penile bulb; and the mean MDA was 2.9/0.9 mm for spacer, 1.9/1.7 mm for prostate, 2.4/2.3 mm for proximal SVs, 0.8/0.5 mm for left femur, 0.7/0.5 mm for right femur, 1.5/0.9 mm for bladder, 2.3/1.9 mm for rectum, and 2.2/2.2 mm for penile bulb. Model II showed significantly improved scores for all ROIs, and metrics for spacer, femurs, bladder, and rectum. Significant inter-observer variability was only found for prostate. Highly linear correlation between the score and DSC was found for the two qualified ROIs (prostate and rectum).
The overall efficiency gain was meaningful for model I and substantial for model II. The ROIs meeting the clinical deployment criteria (mean score below 3.25, DSC above 0.8, and MDA below 2.5 mm) included prostate, both femurs, bladder and rectum for both models, and spacer for model II.
在直肠保留方面,将可吸收水凝胶间隔物注入前列腺和直肠之间越来越受欢迎。该间隔物改变了患者的解剖结构,因此需要新的自动轮廓模型。
报告两种深度学习模型的开发和综合评估,一种用于注射透明(模型 I)间隔物的患者,另一种用于注射不透射线(模型 II)间隔物的患者。
模型 I 通过 135 例透明间隔物的病例进行训练和交叉验证,并在 24 例病例上进行测试。使用改进的训练方法,模型 II 通过相同的数据集进行训练和交叉验证,但在间隔物中的亨氏单位分布被 10 例不透射线间隔物病例的亨氏单位分布所取代。模型 II 在 64 例病例上进行测试。模型自动轮廓八个感兴趣区域(ROI):间隔物、前列腺、近端精囊(SVs)、左右股骨、膀胱、直肠和阴茎球。定性地,由放射肿瘤学家使用 1(直接接受或轻微编辑后接受)、2(中度编辑后接受)、3(主要编辑后接受)和 4(拒绝)评分量表对每个自动轮廓(AC)以及复合集与手动轮廓(MC)进行评估。效率增益的特点是平均分数接近完全[1-1.75]、实质性(1.75-2.5]、有意义(2.5-3.25]和无(3.25-4.00]。定量地,通过骰子相似性系数(DSC)和平均距离一致性(MDA)评估 AC 与 MC 之间的几何相似性,使用 AAPM TG-132 报告中推荐的公差。通过比较两种模型的结果来检验改进训练方法的结果。模型 II 的大量测试案例允许进一步研究临床数据集的观察者间变异性。研究了具有每个可接受分数(1、2、3)10 个或更多计数的 ROI 的分数和 DSC/MDA 之间的相关性。
对于模型 I/II:透明/不透射线间隔物的平均分数分别为 3.63/1.30、前列腺为 2.71/2.16、近端 SVs 为 3.25/2.44、左右股骨为 1.13/1.02、膀胱为 2.25/1.25、直肠为 3.00/2.06、阴茎球为 3.38/2.42,以及复合集为 2.79/2.20;间隔物的平均 DSC 分别为 0.52/0.84、前列腺为 0.84/0.85、近端 SVs 为 0.60/0.62、左侧股骨为 0.94/0.96、右侧股骨为 0.95/0.96、膀胱为 0.91/0.95、直肠为 0.81/0.84,以及阴茎球为 0.65/0.65;间隔物的平均 MDA 分别为 2.9/0.9mm、前列腺为 1.9/1.7mm、近端 SVs 为 2.4/2.3mm、左侧股骨为 0.8/0.5mm、右侧股骨为 0.7/0.5mm、膀胱为 1.5/0.9mm、直肠为 2.3/1.9mm,以及阴茎球为 2.2/2.2mm。模型 II 所有 ROI 的评分均显著提高,间隔物、股骨、膀胱和直肠的指标也显著提高。仅在前列腺中发现显著的观察者间变异性。对于两个合格的 ROI(前列腺和直肠),评分与 DSC 之间存在高度线性相关性。
对于模型 I,总体效率增益具有意义,对于模型 II 具有实质性意义。符合临床部署标准的 ROI(平均评分低于 3.25、DSC 高于 0.8、MDA 低于 2.5mm)包括前列腺、左右股骨、膀胱和直肠,对于模型 II 还包括间隔物。