Suppr超能文献

基于人工智能的前列腺 MRI 自动勾画用于在线自适应放疗。

Automatic AI-based contouring of prostate MRI for online adaptive radiotherapy.

机构信息

Section for Biomedical Physics, Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University of Tübingen, Tübingen, Germany.

Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University of Tübingen, Tübingen, Germany.

出版信息

Z Med Phys. 2024 May;34(2):197-207. doi: 10.1016/j.zemedi.2023.05.001. Epub 2023 May 30.

Abstract

BACKGROUND AND PURPOSE

MR-guided radiotherapy (MRgRT) online plan adaptation accounts for tumor volume changes, interfraction motion and thus allows daily sparing of relevant organs at risk. Due to the high interfraction variability of bladder and rectum, patients with tumors in the pelvic region may strongly benefit from adaptive MRgRT. Currently, fast automatic annotation of anatomical structures is not available within the online MRgRT workflow. Therefore, the aim of this study was to train and validate a fast, accurate deep learning model for automatic MRI segmentation at the MR-Linac for future implementation in a clinical MRgRT workflow.

MATERIALS AND METHODS

For a total of 47 patients, T2w MRI data were acquired on a 1.5 T MR-Linac (Unity, Elekta) on five different days. Prostate, seminal vesicles, rectum, anal canal, bladder, penile bulb, body and bony structures were manually annotated. These training data consisting of 232 data sets in total was used for the generation of a deep learning based autocontouring model and validated on 20 unseen T2w-MRIs. For quantitative evaluation the validation set was contoured by a radiation oncologist as gold standard contours (GSC) and compared in MATLAB to the automatic contours (AIC). For the evaluation, dice similarity coefficients (DSC), and 95% Hausdorff distances (95% HD), added path length (APL) and surface DSC (sDSC) were calculated in a caudal-cranial window of ± 4 cm with respect to the prostate ends. For qualitative evaluation, five radiation oncologists scored the AIC on the possible usage within an online adaptive workflow as follows: (1) no modifications needed, (2) minor adjustments needed, (3) major adjustments/ multiple minor adjustments needed, (4) not usable.

RESULTS

The quantitative evaluation revealed a maximum median 95% HD of 6.9 mm for the rectum and minimum median 95% HD of 2.7 mm for the bladder. Maximal and minimal median DSC were detected for bladder with 0.97 and for penile bulb with 0.73, respectively. Using a tolerance level of 3 mm, the highest and lowest sDSC were determined for rectum (0.94) and anal canal (0.68), respectively. Qualitative evaluation resulted in a mean score of 1.2 for AICs over all organs and patients across all expert ratings. For the different autocontoured structures, the highest mean score of 1.0 was observed for anal canal, sacrum, femur left and right, and pelvis left, whereas for prostate the lowest mean score of 2.0 was detected. In total, 80% of the contours were rated be clinically acceptable, 16% to require minor and 4% major adjustments for online adaptive MRgRT.

CONCLUSION

In this study, an AI-based autocontouring was successfully trained for online adaptive MR-guided radiotherapy on the 1.5 T MR-Linac system. The developed model can automatically generate contours accepted by physicians (80%) or only with the need of minor corrections (16%) for the irradiation of primary prostate on the clinically employed sequences.

摘要

背景与目的

MR 引导放疗(MRgRT)在线计划自适应可考虑肿瘤体积变化、分次间运动,从而允许每天保护相关危及器官。由于膀胱和直肠的分次间变异性很高,盆腔区域肿瘤患者可能会从自适应 MRgRT 中获益匪浅。目前,在线 MRgRT 工作流程中还没有快速自动注释解剖结构的功能。因此,本研究的目的是开发和验证一种用于在 MR-Linac 上进行快速、准确的 MRI 自动分割的深度学习模型,以便在未来的临床 MRgRT 工作流程中实现。

材料与方法

对 47 名患者的 T2w MRI 数据进行了采集,在 1.5 T 的 MR-Linac (Unity,Elekta)上进行了五次不同的采集。手动标注了前列腺、精囊、直肠、肛门、膀胱、阴茎球、身体和骨骼结构。总共 232 个数据集的这些训练数据用于生成基于深度学习的自动勾画模型,并在 20 个未见的 T2w-MRI 上进行验证。为了进行定量评估,由一名放射肿瘤学家对验证集进行勾画,作为金标准轮廓(GSC),并在 MATLAB 中与自动轮廓(AIC)进行比较。对于评估,在前列腺末端 ± 4 cm 的头脚窗内计算了 Dice 相似系数(DSC)、95%Hausdorff 距离(95%HD)、附加路径长度(APL)和表面 DSC(sDSC)。对于定性评估,五位放射肿瘤学家根据在线自适应工作流程中的可能使用情况对 AIC 进行了如下评分:(1)无需修改,(2)需要少量修改,(3)需要大量修改/多次少量修改,(4)无法使用。

结果

定量评估显示,直肠的最大中位数 95%HD 为 6.9mm,膀胱的最小中位数 95%HD 为 2.7mm。膀胱的最大和最小中位数 DSC 分别为 0.97 和 0.73,阴茎球的最大和最小中位数 DSC 分别为 0.97 和 0.73。使用 3mm 的容差水平,直肠(0.94)和肛门(0.68)的 sDSC 最高和最低。定性评估结果显示,所有器官和患者的 AIC 平均得分为 1.2。对于不同的自动勾画结构,肛门、骶骨、左股骨和右股骨、骨盆左的平均得分为 1.0,而前列腺的平均得分为 2.0。总的来说,80%的轮廓被认为是临床可接受的,16%需要少量调整,4%需要大量调整,以适应在线自适应 MRgRT。

结论

在这项研究中,我们成功地在 1.5T MR-Linac 系统上为在线自适应 MR 引导放疗训练了基于人工智能的自动勾画。该模型可以自动生成医生认可的轮廓(80%),或者只需要进行少量修正(16%),就可以在临床上使用的序列上对原发性前列腺进行照射。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdcd/11156783/8bb659b72db2/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验