Suppr超能文献

一种用于整体住院医师申请审查的新工具:使用申请人经历的自然语言处理来预测面试邀请。

A New Tool for Holistic Residency Application Review: Using Natural Language Processing of Applicant Experiences to Predict Interview Invitation.

机构信息

A.U. Mahtani is a resident, Richmond University Medical Center/Mount Sinai, Staten Island, New York; ORCID: https://orcid.org/0000-0002-2101-7157 .

I. Reinstein is a data science engineer, Institute for Innovations in Medical Education, NYU Grossman School of Medicine, New York, New York.

出版信息

Acad Med. 2023 Sep 1;98(9):1018-1021. doi: 10.1097/ACM.0000000000005210. Epub 2023 Mar 16.

Abstract

PROBLEM

Reviewing residency application narrative components is time intensive and has contributed to nearly half of applications not receiving holistic review. The authors developed a natural language processing (NLP)-based tool to automate review of applicants' narrative experience entries and predict interview invitation.

APPROACH

Experience entries (n = 188,500) were extracted from 6,403 residency applications across 3 application cycles (2017-2019) at 1 internal medicine program, combined at the applicant level, and paired with the interview invitation decision (n = 1,224 invitations). NLP identified important words (or word pairs) with term frequency-inverse document frequency, which were used to predict interview invitation using logistic regression with L1 regularization. Terms remaining in the model were analyzed thematically. Logistic regression models were also built using structured application data and a combination of NLP and structured data. Model performance was evaluated on never-before-seen data using area under the receiver operating characteristic and precision-recall curves (AUROC, AUPRC).

OUTCOMES

The NLP model had an AUROC of 0.80 (vs chance decision of 0.50) and AUPRC of 0.49 (vs chance decision of 0.19), showing moderate predictive strength. Phrases indicating active leadership, research, or work in social justice and health disparities were associated with interview invitation. The model's detection of these key selection factors demonstrated face validity. Adding structured data to the model significantly improved prediction (AUROC 0.92, AUPRC 0.73), as expected given reliance on such metrics for interview invitation.

NEXT STEPS

This model represents a first step in using NLP-based artificial intelligence tools to promote holistic residency application review. The authors are assessing the practical utility of using this model to identify applicants screened out using traditional metrics. Generalizability must be determined through model retraining and evaluation at other programs. Work is ongoing to thwart model "gaming," improve prediction, and remove unwanted biases introduced during model training.

摘要

问题

审查住院医师申请叙述部分需要大量时间,这几乎导致一半的申请无法进行全面审查。作者开发了一种基于自然语言处理(NLP)的工具,以自动审查申请人的叙述经验条目并预测面试邀请。

方法

从一个内科项目的 3 个申请周期(2017-2019 年)中的 6403 份申请中提取了 188500 份经验条目,在申请人层面进行了组合,并与面试邀请决定(1224 份邀请)进行了配对。NLP 使用词频-逆文档频率识别重要单词(或单词对),然后使用具有 L1 正则化的逻辑回归预测面试邀请。保留在模型中的术语进行了主题分析。还使用结构化申请数据以及 NLP 和结构化数据的组合构建了逻辑回归模型。使用从未见过的数据评估模型性能,使用接收器操作特征曲线下的面积(AUROC)和精度-召回率曲线(AUPRC)。

结果

NLP 模型的 AUROC 为 0.80(而机会决策为 0.50),AUPRC 为 0.49(而机会决策为 0.19),表明具有中等预测强度。表示积极领导力、研究或社会正义和健康差异工作的短语与面试邀请相关。该模型对这些关键选择因素的检测表明了其表面效度。向模型中添加结构化数据可显著提高预测效果(AUROC 为 0.92,AUPRC 为 0.73),这是因为面试邀请依赖于此类指标。

下一步

该模型代表了使用基于 NLP 的人工智能工具促进住院医师申请全面审查的第一步。作者正在评估使用该模型识别使用传统指标筛选掉的申请人的实际效用。必须通过在其他项目中重新训练和评估模型来确定其可泛化性。正在努力阻止模型“游戏化”,提高预测能力,并消除模型训练过程中引入的不必要偏差。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验