Jiang Wenning, Han Lulu, Li Guorui, Yang Ying, Shen Qidong, Fan Bo, Wang Yuchao, Yu Xiaomin, Sun Yan, He Shengxiu, Du Huakun, Miao Jian, Wang Yuefeng, Jia Lingyun
Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China.
Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China.
Acta Biomater. 2023 May;162:226-239. doi: 10.1016/j.actbio.2023.03.019. Epub 2023 Mar 20.
Accurate analysis of living circulating tumor cells (CTCs) plays a crucial role in cancer diagnosis and prognosis evaluation. However, it is still challenging to develop a facile method for accurate, sensitive, and broad-spectrum isolation of living CTCs. Herein, inspired by the filopodia-extending behavior and clustered surface-biomarker of living CTCs, we present a unique bait-trap chip to achieve accurate and ultrasensitive capture of living CTCs from peripheral blood. The bait-trap chip is designed with the integration of nanocage (NCage) structure and branched aptamers. The NCage structure could "trap" the extended filopodia of living CTCs and resist the adhesion of filopodia-inhibited apoptotic cells, thus realizing the accurate capture (∼95% accuracy) of living CTCs independent of complex instruments. Using an in-situ rolling circle amplification (RCA) method, branched aptamers were easily modified onto the NCage structure, and served as "baits" to enhance the multi-interactions between CTC biomarker and chips, leading to ultrasensitive (99%) and reversible cell capture performance. The bait-trap chip successfully detects living CTCs in broad-spectrum cancer patients and achieves high diagnostic sensitivity (100%) and specificity (86%) of early prostate cancer. Therefore, our bait-trap chip provides a facile, accurate, and ultrasensitive strategy for living CTC isolation in clinical. STATEMENT OF SIGNIFICANCE: A unique bait-trap chip integrated with precise nanocage structure and branched aptamers was developed for the accurate and ultrasensitive capture of living CTCs. Compared with the current CTC isolation methods that are unable to distinguish CTC viability, the nanocage structure could not only "trap" the extended-filopodia of living CTCs, but also resist the adhesion of filopodia-inhibited apoptotic cells, thus realizing the accurate capture of living CTCs. Additionally, benefiting from the "bait-trap" synergistic effects generated by aptamer modification and nanocage structure, our chip achieved ultrasensitive, reversible capture of living CTCs. Moreover, this work provided a facile strategy for living CTC isolation from the blood of patients with early-stage and advanced cancer, exhibiting high consistency with the pathological diagnosis.
活循环肿瘤细胞(CTC)的准确分析在癌症诊断和预后评估中起着至关重要的作用。然而,开发一种简便的方法来准确、灵敏且广谱地分离活CTC仍然具有挑战性。在此,受活CTC的丝状伪足延伸行为和聚集表面生物标志物的启发,我们提出了一种独特的诱饵捕获芯片,以从外周血中实现对活CTC的准确和超灵敏捕获。诱饵捕获芯片通过纳米笼(NCage)结构和分支适体的整合进行设计。NCage结构可以“捕获”活CTC伸出的丝状伪足,并抵抗丝状伪足受抑制的凋亡细胞的黏附,从而无需复杂仪器即可实现对活CTC的准确捕获(准确率约95%)。使用原位滚环扩增(RCA)方法,分支适体很容易修饰到NCage结构上,并作为“诱饵”增强CTC生物标志物与芯片之间的多重相互作用,从而实现超灵敏(99%)和可逆的细胞捕获性能。诱饵捕获芯片成功检测了广谱癌症患者中的活CTC,并实现了早期前列腺癌的高诊断灵敏度(100%)和特异性(86%)。因此,我们的诱饵捕获芯片为临床中活CTC的分离提供了一种简便、准确且超灵敏的策略。重要性声明:开发了一种独特的诱饵捕获芯片,其集成了精确的纳米笼结构和分支适体,用于准确和超灵敏地捕获活CTC。与目前无法区分CTC活力的CTC分离方法相比,纳米笼结构不仅可以“捕获”活CTC伸出的丝状伪足,还能抵抗丝状伪足受抑制的凋亡细胞的黏附,从而实现对活CTC的准确捕获。此外,受益于适体修饰和纳米笼结构产生的“诱饵捕获”协同效应,我们的芯片实现了对活CTC的超灵敏、可逆捕获。而且,这项工作为从早期和晚期癌症患者血液中分离活CTC提供了一种简便策略,与病理诊断具有高度一致性。