Karvelis Povilas, Paulus Martin P, Diaconescu Andreea O
Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
Laureate Institute for Brain Research, Tulsa, OK, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA.
Neurosci Biobehav Rev. 2023 May;148:105137. doi: 10.1016/j.neubiorev.2023.105137. Epub 2023 Mar 20.
Bringing precision to the understanding and treatment of mental disorders requires instruments for studying clinically relevant individual differences. One promising approach is the development of computational assays: integrating computational models with cognitive tasks to infer latent patient-specific disease processes in brain computations. While recent years have seen many methodological advancements in computational modelling and many cross-sectional patient studies, much less attention has been paid to basic psychometric properties (reliability and construct validity) of the computational measures provided by the assays. In this review, we assess the extent of this issue by examining emerging empirical evidence. We find that many computational measures suffer from poor psychometric properties, which poses a risk of invalidating previous findings and undermining ongoing research efforts using computational assays to study individual (and even group) differences. We provide recommendations for how to address these problems and, crucially, embed them within a broader perspective on key developments that are needed for translating computational assays to clinical practice.
要精准理解和治疗精神障碍,需要有研究临床相关个体差异的工具。一种很有前景的方法是开发计算分析方法:将计算模型与认知任务相结合,以推断大脑计算中潜在的患者特异性疾病过程。虽然近年来计算建模在方法上有了很多进展,也开展了许多横断面患者研究,但对于这些分析方法所提供的计算指标的基本心理测量特性(信度和结构效度)却很少有人关注。在本综述中,我们通过审视新出现的实证证据来评估这个问题的严重程度。我们发现,许多计算指标的心理测量特性较差,这有可能使之前的研究结果无效,并破坏目前利用计算分析方法研究个体(甚至群体)差异的研究工作。我们针对如何解决这些问题提出了建议,关键是要将这些问题置于将计算分析方法转化为临床实践所需的关键进展这一更广阔的视角中。