Suppr超能文献

澳大利亚移植后估计生存分数的时间验证。

Temporal validation of the Australian estimated post-transplant survival score.

作者信息

Irish G L, Campbell S, Kanellis J, Wyburn Kate, Clayton Philip A

机构信息

Transplant Epidemiology Group (TrEG), Australia and New Zealand Dialysis and Transplant (ANZDATA) Registry, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.

Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, Australia.

出版信息

Nephrology (Carlton). 2023 May;28(5):292-298. doi: 10.1111/nep.14158.

Abstract

AIMS

The Australian estimated post-transplant survival (EPTS-AU) prediction score was developed by re-fitting the United States of America EPTS, without diabetes, to the Australian and New Zealand kidney transplant population over 2002-2013. The EPTS-AU score incorporates age, previous transplantation and time on dialysis. Diabetes was excluded from the score, as this was not previously recorded in the Australian allocation system. In May 2021, the EPTS-AU prediction score was incorporated into the Australian kidney allocation algorithm to optimize utility for recipients (maximized benefit). We aimed to temporally validate the EPTS-AU prediction score to ensure it can be used for this purpose.

METHODS

Using the Australia and New Zealand Dialysis and Transplant (ANZDATA) Registry, we included adult recipients of deceased donor kidney-only transplants between 2014 and 2021. We constructed Cox models for patient survival. We assessed validation using measures of model fit (Akaike information criterion and misspecification), discrimination (Harrell's C statistic and Kaplan-Meier curves), and calibration (observed vs. predicted survival).

RESULTS

Six thousand four hundred and two recipients were included in the analysis. The EPTS-AU had moderate discrimination with a C statistic of 0.69 (95% CI 0.67, 0.71), and clear delineation between Kaplan-Meier's survival curves of EPTS-AU. The EPTS was well calibrated with the predicted survivals equating with the observed survival outcomes for all prognostic groups.

CONCLUSIONS

The EPTS-AU performs reasonably well in choosing between recipients (discrimination) and to predict a recipient's survival (calibration). Reassuringly, the score is functioning as intended to predict post-transplant survival for recipients as part of the national allocation algorithm.

摘要

目的

澳大利亚估计移植后生存率(EPTS-AU)预测评分是通过将美国无糖尿病的EPTS重新拟合到2002年至2013年期间澳大利亚和新西兰的肾移植人群而制定的。EPTS-AU评分纳入了年龄、既往移植情况和透析时间。糖尿病被排除在评分之外,因为澳大利亚分配系统之前未记录该信息。2021年5月,EPTS-AU预测评分被纳入澳大利亚肾脏分配算法,以优化受者的效用(最大化受益)。我们旨在对EPTS-AU预测评分进行时间验证,以确保其可用于此目的。

方法

利用澳大利亚和新西兰透析与移植(ANZDATA)登记处的数据,我们纳入了2014年至2021年间仅接受 deceased 供体肾脏移植的成年受者。我们构建了患者生存的Cox模型。我们使用模型拟合指标(赤池信息准则和模型误设)、区分度指标(Harrell's C统计量和Kaplan-Meier曲线)以及校准指标(观察到的与预测的生存率)来评估验证情况。

结果

6402名受者纳入分析。EPTS-AU具有中等区分度,C统计量为0.69(95%CI 0.67, 0.71),且EPTS-AU的Kaplan-Meier生存曲线之间有清晰的划分。EPTS校准良好,所有预后组的预测生存率与观察到的生存结果相当。

结论

EPTS-AU在受者之间进行选择(区分度)以及预测受者生存(校准)方面表现相当良好。令人放心的是,该评分按预期发挥作用,作为国家分配算法的一部分预测受者移植后的生存情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验