Technische Universiteit Delft, Mekelweg 5, 2628 CD, Delft, The Netherlands.
Ecole polytechnique federale de Lausanne, Rte Cantonale, 1015 Lausanne, Switzerland.
Soft Matter. 2023 Apr 5;19(14):2554-2563. doi: 10.1039/d2sm01197b.
Sensing forms an integral part of soft matter based robots due to their compliance, dependence on loading conditions, and virtually infinite degrees of freedom. Previous studies have developed several extrinsic sensors and embedded them into soft actuators for displacement and force estimation. What has not been investigated is whether soft robots themselves possess intrinsic sensing capabilities, especially in the case of pneumatically powered soft robots. Such an approach, that exploits the inherent properties of a system toward sensing is called sensorless estimation. Here, we introduce sensorless estimation for the first time in pneumatically powered soft actuators. Specifically, we show that the intrinsic properties of pressure and volume can be used to estimate the output force and displacement of soft actuators. On testing this approach with a bending actuator, we observed errors under 10% and 15% for force and displacement estimation respectively, with randomized and previously unseen test conditions. We also show that combining this approach with a conventional embedded sensor improves estimation accuracy due to sensing redundancy. By modelling soft actuators additionally as sensors, this work presents a new, readily implementable sensing modality that helps us better understand the highly complex behaviour of soft matter based robots.
由于其柔顺性、对加载条件的依赖性以及几乎无限的自由度,传感是基于软物质的机器人不可或缺的一部分。以前的研究已经开发了几种外部传感器,并将其嵌入软致动器中,以进行位移和力估计。尚未研究的是软机器人本身是否具有内在的传感能力,特别是在气动动力软机器人的情况下。这种利用系统固有特性进行传感的方法称为无传感器估计。在这里,我们首次在气动动力软致动器中引入了无传感器估计。具体来说,我们表明压力和体积的固有特性可用于估计软致动器的输出力和位移。在使用弯曲致动器测试此方法时,我们观察到在随机和以前未见的测试条件下,力和位移估计的误差分别低于 10%和 15%。我们还表明,由于传感冗余,将这种方法与传统嵌入式传感器结合使用可以提高估计精度。通过将软致动器进一步建模为传感器,这项工作提出了一种新的、易于实现的传感模式,有助于我们更好地理解基于软物质的机器人的高度复杂行为。