Suppr超能文献

在酿酒酵母中,翻译暂停时负责拯救途径的碰撞双核糖体上功能结构域的系统遗传鉴定。

Systematic genetic identification of functional domains on collided di-ribosomes responsible for rescue pathways upon translation arrest in Saccharomyces cerevisiae.

机构信息

Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba, Japan.

出版信息

FEBS J. 2023 Aug;290(15):3748-3763. doi: 10.1111/febs.16781. Epub 2023 Mar 28.

Abstract

Translation elongation becomes arrested when various obstacles arise, such as a series of inefficient rare codons or stable RNA secondary structures, thus causing ribosomal stalling along the mRNA. Certain wasteful and persistent stalling states are resolved by ribosome rescue pathways. For instance, collisions between stalled and subsequent ribosomes are thought to induce ubiquitination of ribosomal S20 protein by the E3 ubiquitin ligase Hel2, which triggers subsequent rescue reactions. Although structural studies have revealed specific contact sites between collided ribosomes, the ribosomal regions crucial for the rescue reaction remain uncharacterized. In this study, we performed a systematic genetic analysis to identify the molecular regions required for ribosome rescue in Saccharomyces cerevisiae. A series of dominant negative mutations capable of abolishing the rescue reaction were isolated in ribosomal proteins S20 and Asc1. Moreover, mutations in both proteins clustered on the surface of ribosomes between the collided ribosome interfaces, aligned in such a way that they seemingly faced each other. Further analysis via the application of the split-TRP1 protein assay revealed that the mutation of either protein distinctively affected the functional interaction between Hel2 and Asc1, suggesting the development of differential functionality at the interface between collided ribosomes. Our results provide novel and complementary insights into the detailed molecular mechanisms of ribosomal rescue pathways.

摘要

当出现各种障碍时,翻译延伸会被阻止,例如一系列低效的稀有密码子或稳定的 RNA 二级结构,从而导致核糖体沿着 mRNA 停滞。某些浪费和持久的停滞状态可以通过核糖体救援途径来解决。例如,停滞和随后的核糖体之间的碰撞被认为会诱导 E3 泛素连接酶 Hel2 对核糖体 S20 蛋白进行泛素化,从而引发随后的救援反应。尽管结构研究已经揭示了碰撞核糖体之间的特定接触位点,但对于救援反应至关重要的核糖体区域仍未被描述。在这项研究中,我们进行了系统的遗传分析,以确定酿酒酵母中核糖体救援所需的分子区域。在核糖体蛋白 S20 和 Asc1 中分离出一系列能够消除救援反应的显性负突变。此外,这两种蛋白质的突变都聚集在碰撞核糖体界面之间的核糖体表面上,排列方式使得它们似乎彼此相对。通过应用拆分 TRP1 蛋白测定进一步分析表明,两种蛋白质中的突变都显著影响了 Hel2 和 Asc1 之间的功能相互作用,这表明在碰撞核糖体之间的界面上存在不同的功能。我们的研究结果为核糖体救援途径的详细分子机制提供了新颖而互补的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验