Suppr超能文献

使用LoCoMock评分法在脂质双层中高效筛选蛋白质-配体复合物

Efficient screening of protein-ligand complexes in lipid bilayers using LoCoMock score.

作者信息

Morita Rikuri, Shigeta Yasuteru, Harada Ryuhei

机构信息

Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, 305-8577, Tsukuba, Ibaraki, Japan.

出版信息

J Comput Aided Mol Des. 2023 Apr;37(4):217-225. doi: 10.1007/s10822-023-00502-8. Epub 2023 Mar 21.

Abstract

Membrane proteins are attractive targets for drug discovery due to their crucial roles in various biological processes. Studying the binding poses of amphipathic molecules to membrane proteins is essential for understanding the functions of membrane proteins and docking simulations can facilitate the screening of protein-ligand complexes at low computational costs. However, identifying docking poses for a ligand in non-aqueous environments such as lipid bilayers can be challenging. To address this issue, we propose a new docking score called logP-corrected membrane docking (LoCoMock) score. To screen putative protein-ligand complexes embedded in a membrane, the LoCoMock score considers the affinity between a target ligand and the membrane. It combines the docking score of the protein-ligand complex with the logP of the target ligand. In demonstrations using several model ligands, the LoCoMock score screened more putative complexes than the conventional docking score. As extended docking, the LoCoMock score makes it possible to screen membrane proteins more effectively as drug targets than the conventional docking.

摘要

膜蛋白因其在各种生物过程中的关键作用,成为药物研发中颇具吸引力的靶点。研究两亲性分子与膜蛋白的结合构象对于理解膜蛋白的功能至关重要,而对接模拟能够以较低的计算成本促进蛋白质 - 配体复合物的筛选。然而,在诸如脂质双层等非水相环境中确定配体的对接构象可能具有挑战性。为解决这一问题,我们提出了一种新的对接分数,称为logP校正膜对接(LoCoMock)分数。为筛选嵌入膜中的假定蛋白质 - 配体复合物,LoCoMock分数考虑了目标配体与膜之间的亲和力。它将蛋白质 - 配体复合物的对接分数与目标配体的logP相结合。在使用几种模型配体的演示中,LoCoMock分数比传统对接分数筛选出了更多的假定复合物。作为扩展对接,LoCoMock分数使得比传统对接更有效地筛选作为药物靶点的膜蛋白成为可能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验