Suppr超能文献

蛋白质-脂质双层界面处配体结合的定量分析。

A quantitative analysis of ligand binding at the protein-lipid bilayer interface.

作者信息

Barkdull Allison Pearl, Holcomb Matthew, Forli Stefano

机构信息

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.

出版信息

Commun Chem. 2025 Mar 22;8(1):89. doi: 10.1038/s42004-025-01472-8.

Abstract

The majority of drugs target membrane proteins, and many of these proteins contain ligand binding sites embedded within the lipid bilayer. However, targeting these therapeutically relevant sites is hindered by limited characterization of both the sites and the molecules that bind to them. Here, we introduce the Lipid-Interacting LigAnd Complexes Database (LILAC-DB), a curated dataset of 413 structures of ligands bound at the protein-bilayer interface. Analysis of these structures reveals that ligands binding to lipid-exposed sites exhibit distinct chemical properties, such as higher calculated partition coefficient (clogP), molecular weight, and a greater number of halogen atoms, compared to ligands that bind to soluble proteins. Additionally, we demonstrate that the atomic properties of these ligands vary significantly depending on their depth within and exposure to the lipid bilayer. We also find that ligand binding sites exposed to the bilayer have distinct amino acid compositions compared to other protein regions, which may aid in the identification of lipid-exposed binding sites. This analysis provides valuable guidelines for researchers pursuing structure-based drug discovery targeting underexploited ligand binding sites at the protein-lipid bilayer interface.

摘要

大多数药物作用于膜蛋白,其中许多蛋白含有嵌入脂质双分子层内的配体结合位点。然而,由于这些位点以及与之结合的分子的表征有限,靶向这些具有治疗意义的位点受到了阻碍。在此,我们引入了脂质相互作用配体复合物数据库(LILAC-DB),这是一个经过整理的数据集,包含413个在蛋白质-双分子层界面结合的配体结构。对这些结构的分析表明,与结合可溶性蛋白的配体相比,结合脂质暴露位点的配体具有不同的化学性质,如更高的计算分配系数(clogP)、分子量和更多的卤原子。此外,我们证明这些配体的原子性质因其在脂质双分子层中的深度和暴露程度而有显著差异。我们还发现,与其他蛋白质区域相比,暴露于双分子层的配体结合位点具有不同的氨基酸组成,这可能有助于识别脂质暴露的结合位点。该分析为研究人员在蛋白质-脂质双分子层界面靶向未充分利用的配体结合位点进行基于结构的药物发现提供了有价值的指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d462/11929912/305bbbcc7819/42004_2025_1472_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验