Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan.
Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Aichi, 464-8602 Japan.
Plant Cell Physiol. 2023 Dec 6;64(11):1301-1310. doi: 10.1093/pcp/pcad018.
The quantification of stomatal pore size has long been a fundamental approach to understand the physiological response of plants in the context of environmental adaptation. Automation of such methodologies not only alleviates human labor and bias but also realizes new experimental research methods through massive analysis. Here, we present an image analysis pipeline that automatically quantifies stomatal aperture of Arabidopsis thaliana leaves from bright-field microscopy images containing mesophyll tissue as noisy backgrounds. By combining a You Only Look Once X-based stomatal detection submodule and a U-Net-based pore segmentation submodule, we achieved a mean average precision with an intersection of union (IoU) threshold of 50% value of 0.875 (stomata detection performance) and an IoU of 0.745 (pore segmentation performance) against images of leaf discs taken with a bright-field microscope. Moreover, we designed a portable imaging device that allows easy acquisition of stomatal images from detached/undetached intact leaves on-site. We demonstrated that this device in combination with fine-tuned models of the pipeline we generated here provides robust measurements that can substitute for manual measurement of stomatal responses against pathogen inoculation. Utilization of our hardware and pipeline for automated stomatal aperture measurements is expected to accelerate research on stomatal biology of model dicots.
长期以来,量化气孔孔径一直是理解植物在环境适应背景下生理反应的一种基本方法。这种方法的自动化不仅减轻了人力劳动和偏见,而且还通过大量分析实现了新的实验研究方法。在这里,我们提出了一种图像分析管道,该管道可以从包含叶肉组织的明场显微镜图像中自动量化拟南芥叶片的气孔孔径。通过结合基于 You Only Look Once X 的气孔检测子模块和基于 U-Net 的孔分割子模块,我们实现了平均精度,其交集与并集 (IoU) 阈值为 50%的值为 0.875(气孔检测性能)和 0.745(孔分割性能),与使用明场显微镜拍摄的叶盘图像相对应。此外,我们设计了一种便携式成像设备,允许在现场从分离/未分离的完整叶片上轻松获取气孔图像。我们证明,该设备与我们生成的管道的微调模型相结合,可以提供稳健的测量值,可替代针对病原体接种的手动气孔反应测量。我们的硬件和管道的自动化气孔孔径测量的使用有望加速模式双子叶植物气孔生物学的研究。