Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR 8576 CNRS and University of Lille, Villeneuve d'Ascq, France.
Glycotechnology Group, Basque Research and Technology Alliance (BRTA), CIC biomaGUNE, Donostia, Spain.
J Biol Chem. 2023 May;299(5):104627. doi: 10.1016/j.jbc.2023.104627. Epub 2023 Mar 20.
The FimH type-1 fimbrial adhesin allows pathogenic Escherichia coli to adhere to glycoproteins in the epithelial linings of human bladder and intestinal tract, by using multiple fimbriae simultaneously. Pauci- and high-mannose type N-glycans are natural FimH receptors on those glycoproteins. Oligomannose-3 and oligomannose-5 bind with the highest affinity to FimH by using the same Manα1,3Man branch. Oligomannose-6 is generated from oligomannose-5 in the next step of the biogenesis of high-mannose N-glycans, by the transfer of a mannose in α1,2-linkage onto this branch. Using serial crystallography and by measuring the kinetics of binding, we demonstrate that shielding the high-affinity epitope drives the binding of multiple FimH molecules. First, we profiled FimH glycan binding on a microarray containing paucimannosidic N-glycans and in a FimH LEctPROFILE assay. To make the transition to oligomannose-6, we measured the kinetics of FimH binding using paucimannosidic N-glycans, glycoproteins and all four α-dimannosides conjugated to bovine serum albumin. Equimolar mixed interfaces of the dimannosides present in oligomannose-6 and molecular dynamics simulations suggest a positive cooperativity in the bivalent binding of Manα1,3Manα1 and Manα1,6Manα1 dimannosides. The binding of core α1,6-fucosylated oligomannose-3 in cocrystals of FimH is monovalent but interestingly the GlcNAc1-Fuc moiety retains highly flexibility. In cocrystals with oligomannose-6, two FimH bacterial adhesins bind the Manα1,3Manα1 and Manα1,6Manα1 endings of the second trimannose core (A-4'-B). This cooperative switch towards bivalent binding appears sustainable beyond a molar excess of oligomannose-6. Our findings provide important novel structural insights for the design of multivalent FimH antagonists that bind with positive cooperativity.
FimH 型 1 纤毛粘附素允许致病性大肠杆菌通过同时使用多个纤毛附着在人膀胱和肠道的上皮衬里中的糖蛋白上。少甘露糖和高甘露糖型 N-聚糖是这些糖蛋白上天然的 FimH 受体。寡甘露糖-3 和寡甘露糖-5 通过使用相同的 Manα1,3Man 分支以最高亲和力与 FimH 结合。寡甘露糖-6 是在高甘露糖 N-聚糖生物合成的下一步中,通过将一个甘露糖转移到该分支上,从寡甘露糖-5 中产生的。通过连续晶体学和测量结合动力学,我们证明了屏蔽高亲和力表位会驱动多个 FimH 分子的结合。首先,我们在含有少甘露糖型 N-聚糖的微阵列和 FimH LEctPROFILE 测定中对 FimH 聚糖结合进行了分析。为了过渡到寡甘露糖-6,我们使用少甘露糖型 N-聚糖、糖蛋白和与牛血清白蛋白共轭的所有四个α-二甘露糖苷测量了 FimH 结合的动力学。在寡甘露糖-6 中存在的二甘露糖苷的等摩尔混合界面和分子动力学模拟表明,Manα1,3Manα1 和 Manα1,6Manα1 二甘露糖苷的二价结合具有正协同性。FimH 晶体中的核心α1,6-岩藻糖基化寡甘露糖-3 的结合是单价的,但有趣的是 GlcNAc1-Fuc 部分保持高度灵活性。在与寡甘露糖-6 的共晶中,两个 FimH 细菌粘附素结合第二三糖核心(A-4'-B)的 Manα1,3Manα1 和 Manα1,6Manα1 末端。这种朝向二价结合的协同转变似乎在寡甘露糖-6 的摩尔过量之外仍然可持续。我们的发现为设计与正协同性结合的多价 FimH 拮抗剂提供了重要的新结构见解。