Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.
School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
mBio. 2021 Feb 23;12(1):e03664-20. doi: 10.1128/mBio.03664-20.
Chaperone-usher (CU) fimbriae are the most abundant Gram-negative bacterial fimbriae, with 38 distinct CU fimbria types described in alone. Some CU fimbriae have been well characterized and bind to specific glycan targets to confer tissue tropism. For example, type 1 fimbriae bind to α-d-mannosylated glycoproteins such as uroplakins in the bladder via their tip-located FimH adhesin, leading to colonization and invasion of the bladder epithelium. Despite this, the receptor-binding affinity of many other CU fimbria types remains poorly characterized. Here, we used a recombinant strain expressing different CU fimbriae, in conjunction with glycan array analysis comprising >300 glycans, to dissect CU fimbria receptor specificity. We initially validated the approach by demonstrating the purified FimH lectin-binding domain and recombinant expressing type 1 fimbriae bound to a similar set of glycans. This technique was then used to map the glycan binding affinity of six additional CU fimbriae, namely, P, F1C, Yqi, Mat/Ecp, K88, and K99 fimbriae. The binding affinity was determined using whole-bacterial-cell surface plasmon resonance. This work describes new information in fimbrial specificity and a rapid and scalable system to define novel adhesin-glycan interactions that underpin bacterial colonization and disease. Understanding the tropism of pathogens for host and tissue requires a complete understanding of the host receptors targeted by fimbrial adhesins. Furthermore, blocking adhesion is a promising strategy to counter increasing antibiotic resistance and is enabled by the identification of host receptors. Here, we use a defined heterologous expression system to identify glycan receptors for six chaperone-usher fimbriae and identify novel receptors that are consistent with their known function. The same system was used to measure the kinetics of binding to the identified glycan, wherein bacterial cells were immobilized onto a biosensor chip and the interactions with glycans were quantified by surface plasmon resonance. This novel, dual-level analysis, where screening for the repertoire of glycan binding and the hierarchy of affinity of the identified ligands is determined directly from a natively expressed fimbrial structure on the bacterial cell surface, is superior in both throughput and biological relevance.
伴内菌毛(CU)是最丰富的革兰氏阴性菌菌毛,仅 中就描述了 38 种不同的 CU 菌毛类型。一些 CU 菌毛已经得到了很好的描述,它们通过其尖端定位的 FimH 黏附素与特定的聚糖靶标结合,赋予组织嗜性。例如,1 型菌毛通过其尖端定位的 FimH 黏附素与膀胱中的 α-d-甘露糖基化糖蛋白(如尿路上皮蛋白)结合,导致膀胱上皮细胞的定植和侵袭。尽管如此,许多其他 CU 菌毛类型的受体结合亲和力仍未得到很好的描述。在这里,我们使用表达不同 CU 菌毛的重组 菌株,结合包含 >300 种聚糖的聚糖阵列分析,来剖析 CU 菌毛受体特异性。我们最初通过证明纯化的 FimH 凝集素结合结构域和表达 1 型菌毛的重组 菌株与一组相似的聚糖结合来验证该方法。然后,我们使用该技术来绘制另外 6 种 CU 菌毛(即 P、F1C、Yqi、Mat/Ecp、K88 和 K99 菌毛)的聚糖结合亲和力。使用全细菌细胞表面等离子体共振法测定结合亲和力。这项工作描述了菌毛特异性的新信息,以及一种快速和可扩展的系统,用于定义新型黏附素-聚糖相互作用,这些相互作用是细菌定植和疾病的基础。了解病原体对宿主和组织的趋向性需要完全了解菌毛黏附素靶向的宿主受体。此外,阻断黏附是对抗日益增加的抗生素耐药性的一种有前途的策略,并且可以通过鉴定宿主受体来实现。在这里,我们使用定义明确的异源表达系统来鉴定六种伴内菌毛的聚糖受体,并鉴定与已知功能一致的新型受体。同样的系统也用于测量与鉴定的聚糖的结合动力学,其中细菌细胞被固定在生物传感器芯片上,并通过表面等离子体共振定量测定与聚糖的相互作用。这种新颖的、双水平分析,其中筛选聚糖结合的 repertoire 和鉴定配体的亲和力层次直接来自于细菌细胞表面天然表达的菌毛结构,在通量和生物学相关性方面都具有优势。