Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany.
SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
Sci Rep. 2023 Mar 21;13(1):4618. doi: 10.1038/s41598-023-31196-5.
The description of physical processes with many-particle systems is a key approach to the modeling of numerous physical systems. For example in storage rings, where ultrarelativistic particles are agglomerated in dense bunches, the modeling and measurement of their phase-space distribution is of paramount importance: at any time the phase-space distribution not only determines the complete space-time evolution but also provides fundamental performance characteristics for storage ring operation. Here, we demonstrate a non-destructive tomographic imaging technique for the 2D longitudinal phase-space distribution of ultrarelativistic electron bunches. For this purpose, we utilize a unique setup, which streams turn-by-turn near-field measurements of bunch profiles at MHz repetition rates. To demonstrate the feasibility of our method, we induce a non-equilibrium state and show that the phase-space distribution microstructuring as well as the phase-space distribution dynamics can be observed in great detail. Our approach offers a pathway to control ultrashort bunches and supports, as one example, the development of compact accelerators with low energy footprints.
对多粒子系统进行物理过程描述是对大量物理系统进行建模的关键方法。例如,在储存环中,超相对论粒子聚集在密集的束流中,因此对其相空间分布的建模和测量至关重要:在任何时候,相空间分布不仅决定了完整的时空演化,而且为储存环的运行提供了基本的性能特征。在这里,我们展示了一种用于超相对论电子束的二维纵向相空间分布的非破坏性层析成像技术。为此,我们利用了一种独特的设置,该设置以 MHz 的重复率逐圈流传输束流轮廓的近场测量。为了证明我们方法的可行性,我们引入了一种非平衡状态,并表明可以非常详细地观察到相空间分布的微结构以及相空间分布的动力学。我们的方法为控制超短束流提供了一种途径,并支持了低能足迹紧凑型加速器的发展,这是一个例子。