Suppr超能文献

基于支持向量机递归特征消除的机器学习建立高原重症急性病预测模型。

Establishing a prediction model of severe acute mountain sickness using machine learning of support vector machine recursive feature elimination.

机构信息

Department of Traditional Chinese Medicine, Rheumatology Center of Integrated Medicine, The General Hospital of Western Theater Command, PLA, Chengdu, 610083, China.

Department of Hematology, The General Hospital of Western Theater Command, PLA, Chengdu, 610083, China.

出版信息

Sci Rep. 2023 Mar 21;13(1):4633. doi: 10.1038/s41598-023-31797-0.

Abstract

Severe acute mountain sickness (sAMS) can be life-threatening, but little is known about its genetic basis. The study was aimed to explore the genetic susceptibility of sAMS for the purpose of prediction, using microarray data from 112 peripheral blood mononuclear cell (PBMC) samples of 21 subjects, who were exposed to very high altitude (5260 m), low barometric pressure (406 mmHg), and hypobaric hypoxia (VLH) at various timepoints. We found that exposure to VLH activated gene expression in leukocytes, resulting in an inverted CD4/CD8 ratio that interacted with other phenotypic risk factors at the genetic level. A total of 2286 underlying risk genes were input into the support vector machine recursive feature elimination (SVM-RFE) system for machine learning, and a model with satisfactory predictive accuracy and clinical applicability was established for sAMS screening using ten featured genes with significant predictive power. Five featured genes (EPHB3, DIP2B, RHEBL1, GALNT13, and SLC8A2) were identified upstream of hypoxia- and/or inflammation-related pathways mediated by microRNAs as potential biomarkers for sAMS. The established prediction model of sAMS holds promise for clinical application as a genetic screening tool for sAMS.

摘要

严重急性高原病(sAMS)可能危及生命,但对其遗传基础知之甚少。本研究旨在通过对 21 名受试者的 112 份外周血单个核细胞(PBMC)样本的微阵列数据进行分析,探索 sAMS 的遗传易感性,以便进行预测。这些受试者暴露于极高海拔(5260 米)、低气压(406 毫米汞柱)和低压缺氧(VLH)环境中,时间不同。我们发现,VLH 激活了白细胞中的基因表达,导致 CD4/CD8 比值倒置,这种比值在遗传水平上与其他表型风险因素相互作用。总共输入了 2286 个潜在风险基因到支持向量机递归特征消除(SVM-RFE)系统中进行机器学习,使用具有显著预测能力的 10 个特征基因建立了一个具有令人满意的预测准确性和临床适用性的 sAMS 筛查模型。五个特征基因(EPHB3、DIP2B、RHEBL1、GALNT13 和 SLC8A2)位于由 microRNAs 介导的缺氧和/或炎症相关通路的上游,作为 sAMS 的潜在生物标志物。sAMS 的预测模型具有临床应用的潜力,可作为 sAMS 的遗传筛查工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/225f/10030784/6305ce3f421f/41598_2023_31797_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验