Institute for Translational Research, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA.
Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA.
J Alzheimers Dis. 2021;79(4):1691-1700. doi: 10.3233/JAD-201254.
There is a need for more reliable diagnostic tools for the early detection of Alzheimer's disease (AD). This can be a challenge due to a number of factors and logistics making machine learning a viable option.
In this paper, we present on a Support Vector Machine Leave-One-Out Recursive Feature Elimination and Cross Validation (SVM-RFE-LOO) algorithm for use in the early detection of AD and show how the SVM-RFE-LOO method can be used for both classification and prediction of AD.
Data were analyzed on n = 300 participants (n = 150 AD; n = 150 cognitively normal controls). Serum samples were assayed via a multi-plex biomarker assay platform using electrochemiluminescence (ECL).
The SVM-RFE-LOO method reduced the number of features in the model from 21 to 16 biomarkers and achieved an area under the curve (AUC) of 0.980 with a sensitivity of 94.0% and a specificity of 93.3%. When the classification and prediction performance of SVM-RFE-LOO was compared to that of SVM and SVM-RFE, we found similar performance across the models; however, the SVM-RFE-LOO method utilized fewer markers.
We found that 1) the SVM-RFE-LOO is suitable for analyzing noisy high-throughput proteomic data, 2) it outperforms SVM-RFE in the robustness to noise and in the ability to recover informative features, and 3) it can improve the prediction performance. Our recursive feature elimination model can serve as a general model for biomarker discovery in other diseases.
需要更可靠的诊断工具来早期发现阿尔茨海默病(AD)。由于许多因素和后勤问题,机器学习成为了可行的选择,这给早期发现 AD 带来了挑战。
本文提出了一种支持向量机留一法递归特征消除和交叉验证(SVM-RFE-LOO)算法,用于 AD 的早期检测,并展示了 SVM-RFE-LOO 方法如何用于 AD 的分类和预测。
对 300 名参与者(150 名 AD;150 名认知正常对照者)的 n 数据进行分析。通过使用电化学发光(ECL)的多重生物标志物分析平台对血清样本进行检测。
SVM-RFE-LOO 方法将模型中的特征数量从 21 个减少到 16 个生物标志物,曲线下面积(AUC)为 0.980,灵敏度为 94.0%,特异性为 93.3%。当 SVM-RFE-LOO 的分类和预测性能与 SVM 和 SVM-RFE 进行比较时,我们发现模型之间的性能相似;然而,SVM-RFE-LOO 方法使用的标记物较少。
我们发现:1)SVM-RFE-LOO 适用于分析嘈杂的高通量蛋白质组学数据;2)与 SVM-RFE 相比,它在抗噪性和恢复信息特征的能力方面表现更好;3)它可以提高预测性能。我们的递归特征消除模型可以作为其他疾病中生物标志物发现的通用模型。