Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, L7.07.07, B-1348, Louvain-la-Neuve, Belgium.
Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
Commun Biol. 2023 Mar 21;6(1):302. doi: 10.1038/s42003-023-04660-1.
The invasive bacterial pathogen Staphylococcus aureus recruits the complement regulatory protein factor H (fH) to its surface to evade the human immune system. Here, we report the identification of an extremely high-force catch bond used by the S. aureus surface protein SdrE to efficiently capture fH under mechanical stress. We find that increasing the external force applied to the SdrE-fH complex prolongs the lifetime of the bond at an extraordinary high force, 1,400 pN, above which the bond lifetime decreases as an ordinary slip bond. This catch-bond behavior originates from a variation of the dock, lock and latch interaction, where the SdrE ligand binding domains undergo conformational changes under stress, enabling the formation of long-lived hydrogen bonds with fH. The binding mechanism dissected here represents a potential target for new therapeutics against multidrug-resistant S. aureus strains.
侵袭性细菌病原体金黄色葡萄球菌将补体调节蛋白因子 H(fH)招募到其表面,以逃避人体免疫系统。在这里,我们报告了一种极其高力捕获键的鉴定,该键由金黄色葡萄球菌表面蛋白 SdrE 用于在机械应力下有效地捕获 fH。我们发现,增加施加在 SdrE-fH 复合物上的外力会延长键的寿命,在超过 1400 pN 的极高力下,键的寿命会随着普通滑移键而降低。这种捕获键行为源自停靠、锁定和闩锁相互作用的变化,其中 SdrE 配体结合域在应力下发生构象变化,使 fH 形成长寿命氢键。这里剖析的结合机制代表了针对多药耐药金黄色葡萄球菌菌株的新型治疗药物的潜在靶标。