Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy.
mBio. 2017 Sep 5;8(5):e01067-17. doi: 10.1128/mBio.01067-17.
Invasive bacterial pathogens can capture host plasminogen (Plg) and allow it to form plasmin. This process is of medical importance as surface-bound plasmin promotes bacterial spread by cleaving tissue components and favors immune evasion by degrading opsonins. In , Plg binding is in part mediated by cell surface fibronectin-binding proteins (FnBPs), but the underlying molecular mechanism is not known. Here, we use single-cell and single-molecule techniques to demonstrate that FnBPs capture Plg by a sophisticated activation mechanism involving fibrinogen (Fg), another ligand found in the blood. We show that while FnBPs bind to Plg through weak (∼200-pN) molecular bonds, direct interaction of the adhesins with Fg through the high-affinity dock, lock, and latch mechanism dramatically increases the strength of the FnBP-Plg bond (up to ∼2,000 pN). Our results point to a new model in which the binding of Fg triggers major conformational changes in the FnBP protein, resulting in the buried Plg-binding domains being projected and exposed away from the cell surface, thereby promoting strong interactions with Plg. This study demonstrated a previously unidentified role for a ligand-binding interaction by a staphylococcal cell surface protein, i.e., changing the protein orientation to activate a cryptic biological function. captures human plasminogen (Plg) via cell wall fibronectin-binding proteins (FnBPs), but the underlying molecular mechanism is not known. Here we show that the forces involved in the interaction between Plg and FnBPs on the surface are weak. However, we discovered that binding of fibrinogen to FnBPs dramatically strengthens the FnBP-Plg bond, therefore revealing an unanticipated role for Fg in the capture of Plg by These experiments favor a model where Fg-induced conformational changes in FnBPs promote their interaction with Plg. This work uncovers a previously undescribed activation mechanism for a staphylococcal surface protein, whereby ligand-binding elicits a cryptic biological function.
细菌病原体可以捕获宿主纤溶酶原(Plg)并使其形成纤溶酶。这个过程在医学上很重要,因为结合在表面的纤溶酶通过裂解组织成分促进细菌的传播,并通过降解调理素促进免疫逃逸。在金黄色葡萄球菌中,Plg 的结合部分是由细胞表面纤维连接蛋白结合蛋白(FnBPs)介导的,但潜在的分子机制尚不清楚。在这里,我们使用单细胞和单分子技术证明 FnBPs 通过一种复杂的激活机制捕获 Plg,该机制涉及纤维蛋白原(Fg),这是血液中的另一种配体。我们表明,虽然 FnBPs 通过弱(200-pN)分子键与 Plg 结合,但通过高亲和力的对接、锁定和闩锁机制,黏附素与 Fg 的直接相互作用极大地增加了 FnBP-Plg 键的强度(高达2000 pN)。我们的结果指出了一种新的模型,即 Fg 的结合引发 FnBP 蛋白的重大构象变化,导致埋藏的 Plg 结合结构域被投射并暴露于远离细胞表面,从而促进与 Plg 的强相互作用。这项研究证明了金黄色葡萄球菌细胞表面蛋白的配体结合相互作用的一个以前未被识别的作用,即改变蛋白质的方向以激活隐藏的生物学功能。 通过细胞壁纤维连接蛋白结合蛋白(FnBPs)捕获人纤溶酶原(Plg),但潜在的分子机制尚不清楚。在这里,我们表明 Plg 与表面 FnBPs 之间相互作用涉及的力很弱。然而,我们发现纤维蛋白原与 FnBPs 的结合极大地增强了 FnBP-Plg 键,因此揭示了 Fg 在金黄色葡萄球菌捕获 Plg 中的预期作用。这些实验支持了这样一种模型,即 Fg 诱导 FnBPs 的构象变化促进了它们与 Plg 的相互作用。这项工作揭示了一种以前未被描述的金黄色葡萄球菌表面蛋白的激活机制,即配体结合引发隐藏的生物学功能。