Suppr超能文献

植物非生物胁迫信号转导的研究视角

Perspectives in Plant Abiotic Stress Signaling.

作者信息

Couée Ivan

机构信息

UMR 6553 ECOBIO (Ecosystems-Biodiversity-Evolution), Centre National de la Recherche Scientifique (CNRS), University of Rennes, Rennes, France.

出版信息

Methods Mol Biol. 2023;2642:429-444. doi: 10.1007/978-1-0716-3044-0_23.

Abstract

State-of-the-art collections of strategies, approaches, and methods are immediately useful for ongoing characterizations or for novel discoveries in the scientific field of plant abiotic stress signaling. It must however be kept in mind that, in the future, these strategies, approaches, and methods will be facing a number of increasingly complex issues. The development of the necessary confrontation of laboratory-based knowledge on abiotic stress signaling mechanisms with real-life in natura situations of plant-stress interactions involves at least five levels of complexity: (i) plant biodiversity, (ii) the spatio-temporal heterogeneity of stress-related parameters, (iii) the unknowns of future stress-related constraints, (iv) the influence of biotic interactions, (v) the crosstalk between various signaling pathways and their final integration into physiological responses. These complexities are major bottlenecks for assessing the evolutionary, ecological, and agronomical relevance of abiotic stress signaling studies. All of the presently-described strategies, approaches, and methods will have to be gradually complemented with the development of real-time and in natura tools, with systematic application of mathematical modeling to complex interactions and with further research on the impact of stress memory mechanisms on long-term responses.

摘要

最新的策略、方法和手段集合对于植物非生物胁迫信号传导科学领域正在进行的特征描述或新发现具有直接的实用性。然而,必须记住的是,未来这些策略、方法和手段将面临一些日益复杂的问题。将基于实验室的非生物胁迫信号传导机制知识与植物胁迫相互作用的实际自然情况进行必要的对比研究,至少涉及五个复杂层面:(i)植物生物多样性,(ii)胁迫相关参数的时空异质性,(iii)未来胁迫相关限制因素的未知性,(iv)生物相互作用的影响,(v)各种信号通路之间的相互作用及其最终整合到生理反应中。这些复杂性是评估非生物胁迫信号研究的进化、生态和农学相关性的主要瓶颈。所有目前描述的策略、方法和手段都必须随着实时和自然工具的开发、对复杂相互作用进行数学建模的系统应用以及对胁迫记忆机制对长期反应影响的进一步研究而逐步得到补充。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验