Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA.
Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
Cell. 2021 Aug 5;184(16):4284-4298.e27. doi: 10.1016/j.cell.2021.06.009. Epub 2021 Jul 6.
Many organisms evolved strategies to survive desiccation. Plant seeds protect dehydrated embryos from various stressors and can lay dormant for millennia. Hydration is the key trigger to initiate germination, but the mechanism by which seeds sense water remains unresolved. We identified an uncharacterized Arabidopsis thaliana prion-like protein we named FLOE1, which phase separates upon hydration and allows the embryo to sense water stress. We demonstrate that biophysical states of FLOE1 condensates modulate its biological function in vivo in suppressing seed germination under unfavorable environments. We find intragenic, intraspecific, and interspecific natural variation in FLOE1 expression and phase separation and show that intragenic variation is associated with adaptive germination strategies in natural populations. This combination of molecular, organismal, and ecological studies uncovers FLOE1 as a tunable environmental sensor with direct implications for the design of drought-resistant crops, in the face of climate change.
许多生物进化出了在干燥环境中生存的策略。植物种子可以保护脱水的胚胎免受各种压力,并能休眠数千年。水合作用是引发萌发的关键触发因素,但种子感知水分的机制仍未解决。我们鉴定了一个未被描述的拟南芥朊病毒样蛋白,我们将其命名为 FLOE1,它在水合作用下相分离,使胚胎能够感知水分胁迫。我们证明,FLOE1 凝聚物的生物物理状态调节了其在体内的生物学功能,在不利环境下抑制种子萌发。我们发现 FLOE1 表达和相分离的种内、种间和种内自然变异,并表明种内变异与自然种群中适应性萌发策略有关。这些分子、机体和生态研究的结合揭示了 FLOE1 作为一种可调谐的环境传感器,直接影响应对气候变化的抗旱作物的设计。