Suppr超能文献

验证算法以从日本医院的行政索赔数据中识别结直肠癌患者。

Validation of algorithms to identify colorectal cancer patients from administrative claims data of a Japanese hospital.

机构信息

Clinical Study Support, Inc., Daiei Bldg., 2F, 1-11-20 Nishiki, Naka-ku, Nagoya, 460-0003, Japan.

Real-World Evidence and Data Assessment (READS), Graduate School of Medicine, Juntendo University, Tokyo, Japan.

出版信息

BMC Health Serv Res. 2023 Mar 21;23(1):274. doi: 10.1186/s12913-023-09266-1.

Abstract

BACKGROUND

Administrative claims data are a valuable source for clinical studies; however, the use of validated algorithms to identify patients is essential to minimize bias. We evaluated the validity of diagnostic coding algorithms for identifying patients with colorectal cancer from a hospital's administrative claims data.

METHODS

This validation study used administrative claims data from a Japanese university hospital between April 2017 and March 2019. We developed diagnostic coding algorithms, basically based on the International Classification of Disease (ICD) 10th codes of C18-20 and Japanese disease codes, to identify patients with colorectal cancer. For random samples of patients identified using our algorithms, case ascertainment was performed using chart review as the gold standard. The positive predictive value (PPV) was calculated to evaluate the accuracy of the algorithms.

RESULTS

Of 249 random samples of patients identified as having colorectal cancer by our coding algorithms, 215 were confirmed cases, yielding a PPV of 86.3% (95% confidence interval [CI], 81.5-90.1%). When the diagnostic codes were restricted to site-specific (right colon, left colon, transverse colon, or rectum) cancer codes, 94 of the 100 random samples were true cases of colorectal cancer. Consequently, the PPV increased to 94.0% (95% CI, 87.2-97.4%).

CONCLUSION

Our diagnostic coding algorithms based on ICD-10 codes and Japanese disease codes were highly accurate in detecting patients with colorectal cancer from this hospital's claims data. The exclusive use of site-specific cancer codes further improved the PPV from 86.3 to 94.0%, suggesting their desirability in identifying these patients more precisely.

摘要

背景

行政索赔数据是临床研究的有价值来源;然而,使用经过验证的算法来识别患者对于最大限度地减少偏倚至关重要。我们评估了从医院行政索赔数据中识别结直肠癌患者的诊断编码算法的有效性。

方法

这项验证研究使用了日本一所大学医院在 2017 年 4 月至 2019 年 3 月期间的行政索赔数据。我们开发了诊断编码算法,这些算法主要基于国际疾病分类(ICD)第 10 版的 C18-20 代码和日本疾病代码,以识别结直肠癌患者。对于使用我们的算法识别的患者的随机样本,使用图表审查作为金标准进行病例确定。阳性预测值(PPV)用于评估算法的准确性。

结果

在使用我们的编码算法识别的 249 名随机结直肠癌患者样本中,有 215 例被确认为病例,PPV 为 86.3%(95%置信区间[CI],81.5-90.1%)。当诊断代码仅限于特定部位(右结肠、左结肠、横结肠或直肠)的癌症代码时,100 个随机样本中的 94 个是结直肠癌的真实病例。因此,PPV 增加到 94.0%(95%CI,87.2-97.4%)。

结论

我们基于 ICD-10 代码和日本疾病代码的诊断编码算法在从该医院的索赔数据中检测结直肠癌患者方面具有很高的准确性。仅使用特定部位的癌症代码可将 PPV 从 86.3%进一步提高到 94.0%,表明它们在更准确地识别这些患者方面的可取性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aba1/10029250/37d565443796/12913_2023_9266_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验