Suppr超能文献

使用日本一家医院的行政索赔数据验证识别骨转移的算法

Validation of Algorithms to Identify Bone Metastases Using Administrative Claims Data in a Japanese Hospital.

作者信息

Hirano Takahiro, Saito Naoko, Wakabayashi Ryozo, Kuwatsuru Ryohei

机构信息

Clinical Study Support, Inc., Nagoya, Japan.

Real-World Evidence and Data Assessment (READS), Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.

出版信息

Drugs Real World Outcomes. 2023 Jun;10(2):187-194. doi: 10.1007/s40801-022-00347-x. Epub 2023 Jan 18.

Abstract

BACKGROUND

Validated coding algorithms are essential to generate high-quality, real-world evidence from claims data studies.

OBJECTIVE

We aimed to evaluate the validity of the algorithms to identify patients with bone metastases using claims data from a Japanese hospital.

PATIENTS AND METHODS

This study used administrative claims data and electronic medical records at Juntendo University Hospital from April 2017 to March 2019. We developed two candidate claims-based algorithms to detect bone metastases, one based on diagnosis codes alone (Algorithm 1) and the other based on the combination of diagnosis and imaging test codes (Algorithm 2). Of the patients identified by Algorithm 1, 100 patients were randomly sampled. Among these 100 patients, 88 patients met the conditions of Algorithm 2; further, 12 additional patients were randomly sampled from those identified by Algorithm 2, thus obtaining a total of 100 patients for Algorithm 2. They were evaluated for their true diagnosis using the patient chart review as the gold standard. The positive predictive value (PPV) was calculated to assess the accuracy of each algorithm.

RESULTS

For Algorithm 1, 82 patients were analyzed after excluding 18 patients without diagnostic imaging reports. Of these, 69 patients were true positive by chart review, resulting in a PPV of 84.1% (95% confidence interval (CI) 74.5-90.6). For Algorithm 2, 92 patients were analyzed after excluding eight patients whose diagnoses were not judged by chart review. Of these, 76 patients were confirmed positive by chart review, yielding a PPV of 82.6% (95% CI 73.4-89.1).

CONCLUSION

Both claims-based algorithms yielded high PPVs of approximately 85%, with no improvement in PPV by adding imaging test conditions. The diagnosis code-based algorithm is sufficient and valid for identifying bone metastases in this Japanese hospital.

摘要

背景

经过验证的编码算法对于从索赔数据研究中生成高质量的真实世界证据至关重要。

目的

我们旨在使用一家日本医院的索赔数据评估用于识别骨转移患者的算法的有效性。

患者与方法

本研究使用了顺天堂大学医院2017年4月至2019年3月的行政索赔数据和电子病历。我们开发了两种基于索赔的候选算法来检测骨转移,一种仅基于诊断代码(算法1),另一种基于诊断和影像检查代码的组合(算法2)。在算法1识别出的患者中,随机抽取了100名患者。在这100名患者中,88名患者符合算法2的条件;此外,从算法2识别出的患者中再随机抽取12名患者,从而为算法2总共获得100名患者。以病历审查作为金标准对他们的真实诊断进行评估。计算阳性预测值(PPV)以评估每种算法的准确性。

结果

对于算法1,在排除18名没有诊断影像报告的患者后,对82名患者进行了分析。其中,经病历审查69名患者为真阳性,PPV为84.1%(95%置信区间(CI)74.5 - 90.6)。对于算法2,在排除8名诊断未通过病历审查判定的患者后,对92名患者进行了分析。其中,经病历审查76名患者被确认为阳性,PPV为82.6%(95% CI 73.4 - 89.1)。

结论

两种基于索赔的算法均产生了约85%的高PPV,添加影像检查条件后PPV没有提高。基于诊断代码的算法对于在这家日本医院识别骨转移是充分且有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d0d/10232691/d9d917d69090/40801_2022_347_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验