Caston Rose M, Smith Elliot H, Davis Tyler S, Singh Hargunbir, Rahimpour Shervin, Rolston John D
Department of Biomedical Engineering, University of Utah, 84112.
Department of Neurosurgery, University of Utah, 84112.
bioRxiv. 2023 Mar 10:2023.03.08.531576. doi: 10.1101/2023.03.08.531576.
Pain is a complex experience involving sensory, emotional, and cognitive aspects, and multiple networks manage its processing in the brain. Examining how pain transforms into a behavioral response can shed light on the networks' relationships and facilitate interventions to treat chronic pain. However, studies using high spatial and temporal resolution methods to investigate the neural encoding of pain and its psychophysical correlates have been limited. We recorded from intracranial stereo-EEG (sEEG) electrodes implanted in sixteen different brain regions of twenty patients who underwent psychophysical pain testing consisting of a tonic thermal stimulus to the hand. Broadband high-frequency local field potential amplitude (HFA; 70-150 Hz) was isolated to investigate the relationship between the ongoing neural activity and the resulting psychophysical pain evaluations. Two different generalized linear mixed-effects models (GLME) were employed to assess the neural representations underlying binary and graded pain psychophysics. The first model examined the relationship between HFA and whether the patient responded "yes" or "no" to whether the trial was painful. The second model investigated the relationship between HFA and how painful the stimulus was rated on a visual analog scale. GLMEs revealed that HFA in the inferior temporal gyrus (ITG), superior frontal gyrus (SFG), and superior temporal gyrus (STG) predicted painful responses at stimulus onset. An increase in HFA in the orbitofrontal cortex (OFC), SFG, and striatum predicted pain responses at stimulus offset. Numerous regions including the anterior cingulate cortex, hippocampus, IFG, MTG, OFC, and striatum, predicted the pain rating at stimulus onset. However, only the amygdala and fusiform gyrus predicted increased pain ratings at stimulus offset. We characterized the spatiotemporal representations of binary and graded painful responses during tonic pain stimuli. Our study provides evidence from intracranial recordings that the neural encoding of psychophysical pain changes over time during a tonic thermal stimulus, with different brain regions being predictive of pain at the beginning and end of the stimulus.
疼痛是一种复杂的体验,涉及感觉、情感和认知方面,多个神经网络在大脑中管理其处理过程。研究疼痛如何转化为行为反应可以揭示神经网络之间的关系,并促进慢性疼痛治疗的干预措施。然而,使用高空间和时间分辨率方法来研究疼痛的神经编码及其心理物理学相关性的研究一直有限。我们记录了20名接受心理物理学疼痛测试(对手部进行持续性热刺激)患者的颅内立体脑电图(sEEG)电极,这些电极植入了16个不同的脑区。分离出宽带高频局部场电位幅度(HFA;70 - 150Hz),以研究持续神经活动与由此产生的心理物理学疼痛评估之间的关系。采用两种不同的广义线性混合效应模型(GLME)来评估二元和分级疼痛心理物理学背后的神经表征。第一个模型研究了HFA与患者对试验是否疼痛回答“是”或“否”之间的关系。第二个模型研究了HFA与刺激在视觉模拟量表上被评为多痛之间的关系。GLMEs显示,颞下回(ITG)、额上回(SFG)和颞上回(STG)的HFA在刺激开始时预测疼痛反应。眶额皮质(OFC)、SFG和纹状体中HFA的增加在刺激结束时预测疼痛反应。包括前扣带回皮质、海马体、额下回、颞中回、OFC和纹状体在内的许多区域在刺激开始时预测疼痛评分。然而,只有杏仁核和梭状回在刺激结束时预测疼痛评分增加。我们描述了持续性疼痛刺激期间二元和分级疼痛反应的时空表征。我们的研究从颅内记录中提供了证据,表明在持续性热刺激期间,心理物理学疼痛的神经编码随时间变化,不同脑区在刺激开始和结束时预测疼痛。