Suppr超能文献

等级隶属度的差异表达分析在序列计数数据中解释结构的等级隶属度差异表达分析方法

GoM DE: interpreting structure in sequence count data with differential expression analysis allowing for grades of membership.

作者信息

Carbonetto Peter, Luo Kaixuan, Sarkar Abhishek, Hung Anthony, Tayeb Karl, Pott Sebastian, Stephens Matthew

机构信息

Department of Human Genetics, University of Chicago, Chicago, IL, USA.

Research Computing Center, University of Chicago, Chicago, IL, USA.

出版信息

bioRxiv. 2023 Sep 14:2023.03.03.531029. doi: 10.1101/2023.03.03.531029.

Abstract

Parts-based representations, such as non-negative matrix factorization and topic modeling, have been used to identify structure from single-cell sequencing data sets, in particular structure that is not as well captured by clustering or other dimensionality reduction methods. However, interpreting the individual parts remains a challenge. To address this challenge, we extend methods for differential expression analysis by allowing cells to have partial membership to multiple groups. We call this grade of membership differential expression (GoM DE). We illustrate the benefits of GoM DE for annotating topics identified in several single-cell RNA-seq and ATAC-seq data sets.

摘要

基于部分的表示方法,如非负矩阵分解和主题建模,已被用于从单细胞测序数据集中识别结构,特别是那些聚类或其他降维方法未能很好捕捉到的结构。然而,解释这些个体部分仍然是一个挑战。为了应对这一挑战,我们通过允许细胞部分隶属于多个组来扩展差异表达分析方法。我们将这种隶属度称为差异表达等级(GoM DE)。我们展示了GoM DE在注释几个单细胞RNA测序和ATAC测序数据集中识别出的主题方面的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/034f/10518988/92ccc8dc9912/nihpp-2023.03.03.531029v3-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验