Department of Human Genetics, University of Chicago, Chicago, IL, USA.
Research Computing Center, University of Chicago, Chicago, IL, USA.
Genome Biol. 2023 Oct 19;24(1):236. doi: 10.1186/s13059-023-03067-9.
Parts-based representations, such as non-negative matrix factorization and topic modeling, have been used to identify structure from single-cell sequencing data sets, in particular structure that is not as well captured by clustering or other dimensionality reduction methods. However, interpreting the individual parts remains a challenge. To address this challenge, we extend methods for differential expression analysis by allowing cells to have partial membership to multiple groups. We call this grade of membership differential expression (GoM DE). We illustrate the benefits of GoM DE for annotating topics identified in several single-cell RNA-seq and ATAC-seq data sets.
基于部分的表示方法,如非负矩阵分解和主题建模,已被用于从单细胞测序数据集识别结构,特别是那些聚类或其他降维方法无法很好捕捉到的结构。然而,解释各个部分仍然是一个挑战。为了解决这个挑战,我们通过允许细胞对多个组具有部分成员资格,扩展了用于差异表达分析的方法。我们称之为分级成员差异表达(GoM DE)。我们通过在几个单细胞 RNA-seq 和 ATAC-seq 数据集识别的主题来说明 GoM DE 注释的好处。