Suppr超能文献

GoM DE:利用允许成员等级的差异表达分析来解释序列计数数据中的结构。

GoM DE: interpreting structure in sequence count data with differential expression analysis allowing for grades of membership.

机构信息

Department of Human Genetics, University of Chicago, Chicago, IL, USA.

Research Computing Center, University of Chicago, Chicago, IL, USA.

出版信息

Genome Biol. 2023 Oct 19;24(1):236. doi: 10.1186/s13059-023-03067-9.

Abstract

Parts-based representations, such as non-negative matrix factorization and topic modeling, have been used to identify structure from single-cell sequencing data sets, in particular structure that is not as well captured by clustering or other dimensionality reduction methods. However, interpreting the individual parts remains a challenge. To address this challenge, we extend methods for differential expression analysis by allowing cells to have partial membership to multiple groups. We call this grade of membership differential expression (GoM DE). We illustrate the benefits of GoM DE for annotating topics identified in several single-cell RNA-seq and ATAC-seq data sets.

摘要

基于部分的表示方法,如非负矩阵分解和主题建模,已被用于从单细胞测序数据集识别结构,特别是那些聚类或其他降维方法无法很好捕捉到的结构。然而,解释各个部分仍然是一个挑战。为了解决这个挑战,我们通过允许细胞对多个组具有部分成员资格,扩展了用于差异表达分析的方法。我们称之为分级成员差异表达(GoM DE)。我们通过在几个单细胞 RNA-seq 和 ATAC-seq 数据集识别的主题来说明 GoM DE 注释的好处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e49/10588049/c5db1a32e3fa/13059_2023_3067_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验