Suppr超能文献

利用TranNet探索肿瘤与正常组织的相互作用:环境在肿瘤进展中的作用

Exploring tumor-normal cross-talk with TranNet: role of the environment in tumor progression.

作者信息

Amgalan Bayarbaatar, Day Chi-Ping, Przytycka Teresa M

机构信息

National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland, USA.

Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.

出版信息

bioRxiv. 2023 Feb 24:2023.02.24.529899. doi: 10.1101/2023.02.24.529899.

Abstract

There is a growing awareness that tumor-adjacent normal tissues used as control samples in cancer studies do not represent fully healthy tissues. Instead, they are intermediates between healthy tissues and tumors. The factors that contribute to the deviation of such control samples from healthy state include exposure to the tumor-promoting factors, tumor-related immune response, and other aspects of tumor microenvironment. Characterizing the relation between gene expression of tumor-adjacent control samples and tumors is fundamental for understanding roles of microenvironment in tumor initiation and progression, as well as for identification of diagnostic and prognostic biomarkers for cancers. To address the demand, we developed and validated TranNet, a computational approach that utilizes gene expression in matched control and tumor samples to study the relation between their gene expression profiles. TranNet infers a sparse weighted bipartite graph from gene expression profiles of matched control samples to tumors. The results allow us to identify predictors (potential regulators) of this transition. To our knowledge, TranNet is the first computational method to infer such regulation. We applied TranNet to the data of several cancer types and their matched control samples from The Cancer Genome Atlas (TCGA). Many predictors identified by TranNet are genes associated with regulation by the tumor microenvironment as they are enriched in G-protein coupled receptor signaling, cell-to-cell communication, immune processes, and cell adhesion. Correspondingly, targets of inferred predictors are enriched in pathways related to tissue remodelling (including the epithelial-mesenchymal Transition (EMT)), immune response, and cell proliferation. This implies that the predictors are markers and potential stromal facilitators of tumor progression. Our results provide new insights for the relationships between tumor adjacent control sample, tumor and the tumor environment. Moreover, the set of predictors identified by TranNet will provide a valuable resource for future investigations. The TranNet method was implemented in python, source codes and the data sets used for and generated during this study are available at the Github site https://github.com/ncbi/TranNet .

摘要

人们越来越意识到,在癌症研究中用作对照样本的肿瘤邻近正常组织并不完全代表健康组织。相反,它们是健康组织和肿瘤之间的中间状态。导致此类对照样本偏离健康状态的因素包括接触肿瘤促进因子、肿瘤相关免疫反应以及肿瘤微环境的其他方面。表征肿瘤邻近对照样本与肿瘤的基因表达之间的关系,对于理解微环境在肿瘤发生和进展中的作用,以及识别癌症的诊断和预后生物标志物至关重要。为了满足这一需求,我们开发并验证了TranNet,这是一种计算方法,利用匹配的对照和肿瘤样本中的基因表达来研究它们的基因表达谱之间的关系。TranNet从匹配的对照样本到肿瘤的基因表达谱推断出一个稀疏加权二分图。结果使我们能够识别这种转变的预测因子(潜在调节因子)。据我们所知,TranNet是第一种推断这种调节的计算方法。我们将TranNet应用于来自癌症基因组图谱(TCGA)的几种癌症类型及其匹配对照样本的数据。TranNet识别出的许多预测因子都是与肿瘤微环境调节相关的基因,因为它们在G蛋白偶联受体信号传导、细胞间通讯、免疫过程和细胞粘附中富集。相应地,推断出的预测因子的靶标在与组织重塑(包括上皮-间质转化(EMT))、免疫反应和细胞增殖相关的途径中富集。这意味着这些预测因子是肿瘤进展的标志物和潜在的基质促进因子。我们的结果为肿瘤邻近对照样本、肿瘤和肿瘤环境之间的关系提供了新的见解。此外,TranNet识别出的预测因子集将为未来的研究提供有价值的资源。TranNet方法是用Python实现的,本研究中使用和生成的源代码和数据集可在Github网站https://github.com/ncbi/TranNet上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c45a/10028821/3ed88ee476e7/nihpp-2023.02.24.529899v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验